玉米花序分枝和穗粒数发育的分子调控

李曼菲,段奥,蒋凤林,黄敏,杜何为,张祖新

植物遗传资源学报. 2023, 24(1): 44-52

PDF(916 KB)
PDF(916 KB)
植物遗传资源学报 ›› 2023, Vol. 24 ›› Issue (1) : 44-52. DOI: 10.13430/j.cnki.jpgr.20220622001
综述

玉米花序分枝和穗粒数发育的分子调控

  • 李曼菲1,2,段奥1,蒋凤林1,黄敏1,杜何为1,张祖新2
作者信息 +

Molecular Regulation on the Development of Reproductive Branches and Kernel Number in Maize Inflorescences

  • LI Man-fei1,2, DUAN Ao1, JIANG Feng-lin1, HUANG Min1, DU He-wei1, ZHANG Zu-xin2
Author information +
History +

摘要

玉米是我国第一大粮食饲料作物,对保障我国粮食安全具有重要战略意义。玉米是雌雄同株异花植物,雄穗为圆锥花序,雌穗为肉穗花序。玉米花序和小花的分化与发育是穗粒数形成和小花育性决定的发育生物学基础,与籽粒产量密切相关,因而这一研究领域受到广泛关注,并取得了丰硕的成果。近年来,为了提高玉米粮食产量和更加深入地解析产量形成分子网络,研究学者在玉米花序分枝发育和穗粒数形成的遗传控制和分子调控机制等研究方向取得了一系列新的研究进展。本研究主要聚焦花序特异性转录因子基因、非编码序列及其调控基因、活性氧清除和糖代谢相关酶基因、乙烯等激素生物合成和信号途径关键基因以及膜系统与信号传导相关基因等,对这些基因在玉米花序分枝、小穗和小花发育进程中的生物学功能与作用途径进行了综述,并对生物技术发展推动全基因组序列分析、激素与代谢物交互网络分析以及精准育种等进行了展望,以期为玉米花序发育、穗粒数和籽粒产量的分子遗传调控网络构建和玉米高产育种提供参考。

Abstract

Maize (Zea mays L.) is the most important food and feed crop which plays an important strategic role in food security in China. Maize is the monoecious plant species, tassel is panicle and ear is spadix. The differentiation and development of inflorescences and florets are the basis for the number and fertility of florets in maize ultimately resulting in a formation of grain yield. Therefore, this research field is of significant interest and fruitful achievements have been made. In the past few years, in order to improve maize grain yield and further analysis the molecular network of yield formation, the latest progresses in the field of genetic modulation and regulatory mechanism on inflorescence branching and kernel number have been reported. In this paper, we briefly summarize our understanding of the genes and their acting pathways in the development of inflorescence branches, spikelets and florets. This review focuses on the inflorescence-specific transcription factors, non-coding sequences and their regulators, enzymes involved in the reactive oxygen species (ROS) scavenging and carbohydrate metabolism, key factors in ethylene biosynthesis and signal pathway, and major players in membrane system and signal transduction. And we make prospects for the development of biotechnology to promote whole genome sequence analysis, interaction network analysis of hormones and metabolites, and precision breeding. We aim to provide an insight in understanding of the crucial genetic factors and pathways controlling inflorescence development, which has implications for future research on the genetic regulatory network of inflorescences and florets, as well as on the high-yield breeding in maize.

关键词

玉米(Zea mays L.) / 花序 / 分枝发育 / 穗粒数 / 调控网络

Key words

maize (Zea mays L.) / inflorescence / branch development / kernel number / regulatory network

引用本文

导出引用
李曼菲,段奥,蒋凤林,黄敏,杜何为,张祖新. 玉米花序分枝和穗粒数发育的分子调控. 植物遗传资源学报. 2023, 24(1): 44-52 https://doi.org/10.13430/j.cnki.jpgr.20220622001
LI Man-fei,DUAN Ao,JIANG Feng-lin,HUANG Min,DU He-wei,ZHANG Zu-xin. Molecular Regulation on the Development of Reproductive Branches and Kernel Number in Maize Inflorescences. Journal of Plant Genetic Resources. 2023, 24(1): 44-52 https://doi.org/10.13430/j.cnki.jpgr.20220622001

参考文献

[1] Vollbrecht E, Schmidt R J. Development of the inflorescences//Bennetzen J L,Hake S C. Handbook of maize: Its biology. New York:Springer,2009: 13-40
[2] Bowman J L, Smyth D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development, 1999,126(11):2387-2396
[3] Strable J, Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate floret development and floral meristem determinacy. Development, 2019, 146(6): dev171181
[4] Mena M, Ambrose B A, Meeley R B, Briggs S P, Yanofsky M F, Schmidt R J. Diversification of C-function activity in maize flower development. Science, 1996, 274(5292): 1537-1540
[5] Du Y, Lunde C, Li Y, Jackson D, Hake S, Zhang Z. Gene duplication at the Fascicled ear1 locus controls the fate of inflorescence meristem cells in maize. Proceedings of the National Academy of Sciences, 2021, 118(7): e2019218118
[6] Lee S H, Jang M K, Kim O S, Lee O H, Kim N Y, Yoo K H, Lee D G, Shong Y H, Mouradian M M. Activation of the GDNF-inducible transcription factor (GIF) gene promoter by glucocorticoid and progesterone. The Journal of Steroid Biochemistry and Molecular Biology, 2009, 115(1-2): 30-35
[7] Lee B H, Wynn A N, Franks R G, Hwang Y S, Lim J, Kim J H. The Arabidopsis thaliana GRF-INTERACTING FACTOR gene family plays an essential role in control of male and female reproductive development. Developmental Biology, 2014, 386(1): 12-24
[8] Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. Journal of Plant Research, 2006, 119(1): 37-42
[9] Zhang D, Sun W, Singh R, Zheng Y, Cao Z, Li M, Lunde C, Hake S, Zhang, Z. GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize. The Plant Cell, 2018, 30(2): 360-374
[10] Li M, Zheng Y, Cui D, Du Y, Zhang D, Sun W, Du H, Zhang Z. GIF1 controls ear inflorescence architecture and floral development by regulating key genes in hormone biosynthesis and meristem determinacy in maize. BMC Plant Biology, 2022, 22(1): 1-15
[11] Chen W, Chen L, Zhang X, Yang N, Guo J, Wang M, Ji S, Zhao X, Yin P, Cai L, Xu J, Zhang Y, Han Y, Xiao Y, Xu G, Wang Y, Wang S, Wu S, Yang F, Jackson D, Cheng J, Chen S, Sun C, Qin F, Tian F, Fernie A R, Li J, Yan J, Yang X. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375(6587):1370-1373
[12] Song B, Buckler E S, Wang H, Wu Y, Rees E, Kellogg E A, Gates D J, Khaipho-Burch M, Bradbury P J, Ross-Ibarra J, Hufford M B, Romay M C. Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Research, 2021, 31(7): 1245-1257
[13] Chuck G S, Brown P J, Meeley R, Hake S. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proceedings of the National Academy of Sciences, 2014, 111(52): 18775-18780
[14] Liu L, Du Y, Huo D, Wang M, Shen X, Yue B, Qiu F, Zheng Y, Yan J, Zhang Z. Genetic architecture of maize kernel row number and whole genome prediction. Theoretical and Applied Genetics, 2015, 128(11): 2243-2254
[15] Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z. KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics, 2015, 11(11): e1005670
[16] Du Y, Liu L, Peng Y, Li M,Li Y,Liu D,Li X,Zhang Z. UNBRANCHED3 expression and inflorescence development is mediated by UNBRANCHED2 and the distal enhancer, KRN4, in maize. PLoS Genetics, 2020, 16(4): e1008764
[17] Chuck G, Cigan A M, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics, 2007, 39(4): 544-549
[18] Chuck G, Whipple C, Jackson D, Hake S. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development, 2010, 137(8): 1243-1250
[19] Mhamdi A, Van Breusegem F. Reactive oxygen species in plant development. Development, 2018, 145(15): dev164376
[20] Weits D A, Kunkowska A B, Kamps N C W, Portz K M S, Packbier N K, Venza Z N, Gaillochet C, Lohmann J U, Pedersen O, van Dongen J T, Licausi F. An apical hypoxic niche sets the pace of shoot meristem activity. Nature, 2019, 569(7758): 714-717
[21] Rouhier N, Gelhaye E, Jacquot J P. Plant glutaredoxins: Still mysterious reducing systems. Cellular and Molecular Life Sciences, 2004, 61(11): 1266-1277
[22] Hong L, Tang D, Zhu K, Wang K, Li M, Cheng Z. Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. The Plant Cell, 2012, 24(2): 577-588
[23] Yang R S, Xu F, Wang Y M, Zhong W S, Dong L, Shi Y N, Tang T J, Sheng H J, Jackson D, Yang F. Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity. Nature Plants, 2021, 7(12): 1589-1601
[24] Pautler M, Eveland A L, LaRue T, Yang F, Weeks R, Lunde C, Je B, Meeley R, Komatsu M, Vollbrecht E, Hajime Sakai, Jackson D. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. The Plant Cell, 2015, 27(1): 104-120
[25] Fichtner F, Lunn J E. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annual Review of Plant Biology, 2021, 72: 737-760
[26] Paul M J. Trehalose 6-phosphate: A signal of sucrose status. Biochemical Journal, 2008, 412(1): e1-e2
[27] Li Z, Wei X, Tong X, Zhao J, Liu X, Wang H, Tang L, Shu Y, Li G, Wang Y, Ying J, Jiao G, Hu H, Hu P, Zhang J. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. Molecular Plant, 2022, 15(4): 706-722
[28] Nuccio M L, Wu J, Mowers R, Zhou H P, Meghji M, Primavesi L F, Paul M J, Chen X, Gao Y, Haque E, Basu S S, Lagrimini L M. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 2015, 33(8): 862-869
[29] Vollbrecht E, Springer P S, Goh L, Buckler E S, Martienssen R. Architecture of floral branch systems in maize and related grasses. Nature, 2005, 436(7054): 1119-1126
[30] Bortiri E, Hake S. Flowering and determinacy in maize. Journal of Experimental Botany, 2007, 58(5): 909-916
[31] Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature, 2006, 441(7090): 227-230
[32] Dong Z, Xiao Y, Govindarajulu R, Feil R, Siddoway M L, Nielsen T, Lunn J E, Hawkins J, Whipple C, Chuck G. The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nature Communications, 2019, 10(1): 1-15
[33] Wills D M, Whipple C J, Takuno S, Kursel L E, Shannon L M, Ross-Ibarra J, Doebley J F. From many, one: Genetic control of prolificacy during maize domestication. PLoS Genetics, 2013, 9(6): e1003604
[34] Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez M J, Heeney M, Feil R, Lunn J E, Xiao Y, Chuck G, Whipple C, Jackson D, Bartlett M. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proceedings of the National Academy of Sciences, 2022, 119(2):e2115871119
[35] Igamberdiev A U, Bykova N V. Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radical Biology and Medicine, 2018, 122: 74-85
[36] Zhao Y, Luo L, Xu J, Xin P, Guo H, Wu J, Bai L, Wang G, Chu J, Zuo J, Yu H, Huang X, Li J. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Research, 2018, 28(4): 448-461
[37] Selinski J, Scheibe R. Malate valves: Old shuttles with new perspectives. Plant Biology, 2019, 21: 21-30
[38] Pei Y, Deng Y, Zhang H, Zhang Z, Liu J, Chen Z, Cai D, Li K, Du Y, Zang J, Xin P, Chu J, Chen Y, Zhao L, Liu J, Chen H. EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. The Plant Cell, 2022,34(6): 2222-2241
[39] Heng Y, Wu C, Long Y, Luo S, Ma J, Chen J, Liu J, Zhang H, Ren Y, Wang M, Tan J, Zhu S, Wang J, Lei C, Zhang X, Guo X, Wang H, Cheng Z, Wan J. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell,2018, 30(4):889-906
[40] Qin H, He L, Huang R. The coordination of ethylene and other hormones in primary root development. Frontiers in Plant Science, 2019, 10: 874
[41] Ortega-Martínez O, Pernas M, Carol R J, Dolan L. Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science, 2007, 317(5837): 507-510
[42] De Martinis D, Mariani C. Silencing gene expression of the ethylene-forming enzyme results in a reversible inhibition of ovule development in transgenic tobacco plants. The Plant Cell, 1999, 11(6): 1061-1071
[43] Habben J E, Bao X, Bate N J, DeBruin J L, Dolan D, Hasegawa D, Helentjaris T G, Lafitte R H, Lovan N, Mo H, Reimann K, Schussler J R. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought‐stress conditions. Plant Biotechnology Journal, 2014, 12(6): 685-693
[44] Ning Q, Jian Y, Du Y, Li Y, Shen X, Jia H, Zhao R, Zhan J, Yang F, Jackson D, Liu L, Zhang Z. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 2021, 12(1): 1-10
[45] Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt R J, McSteen P. sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proceedings of the National Academy of Sciences, 2008, 105(39): 15196-15201
[46] Phillips K A, Skirpan A L, Liu X, Christensen A, Slewinski T L, Hudson C, Barazesh S, Cohen J D, Malcomber S, McSteen P. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. The Plant Cell, 2011, 23(2): 550-556
[47] Huang P, Jiang H, Zhu C, Barry K, Jenkins J, Sandor L, Schmutz J, Box M S, Kellogg E A, Brutnell T P. Sparse panicle1 is required for inflorescence development in Setaria viridis and maize. Nature Plants, 2017, 3(5): 1-6
[48] McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, Kellogg E, Hake S. barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiology, 2007, 144(2): 1000-1011
[49] Michniewicz M, Brewer P B, Friml J. Polar auxin transport and asymmetric auxin distribution. The Arabidopsis Book, 2007, 5:e0108
[50] Skirpan A, Culler A H, Gallavotti A, Jackson D, Cohen J D, McSteen P. BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development. Plant and Cell Physiology, 2009, 50(3): 652-657
[51] Carraro N, Forestan C, Canova S, Traas J, Varotto S. ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiology, 2006, 142(1): 254-264
[52] Yao H, Skirpan A, Wardell B, Matthes M S, Best N B, McCubbin T, Durbak A, Smith T, Malcomber S, McSteen P. The barren stalk2 gene is required for axillary meristem development in maize. Molecular Plant, 2019, 12(3): 374-389
[53] Ritter M K, Padilla C M, Schmidt R J. The maize mutant barren stalk1 is defective in axillary meristem development. American Journal of Botany, 2002, 89(2): 203-210
[54] Weijers D, Wagner D. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology, 2016, 67: 539-574
[55] Galli M, Liu Q, Moss B L, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J L, Gallavotti A. Auxin signaling modules regulate maize inflorescence architecture. Proceedings of the National Academy of Sciences, 2015, 112(43): 13372-13377
[56] Qin X, Tian S, Zhang W, Dong X, Ma C, Wang Y, Yan J, Yue B. QDtbn1, an F‐box gene affecting maize tassel branch number by a dominant model. Plant Biotechnology Journal, 2021, 19(6): 1183-1194
[57] Jia F, Wu B, Li H, Huang J, Zheng C. Genome-wide identification and characterisation of F-box family in maize. Molecular Genetics and Genomics, 2013, 288(11): 559-577
[58] Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z. Mutations in the F‐box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 2011, 9(9): 1002-1013
[59] Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 2004, 101(49): 17306-17311
[60] Baena-González E, Lunn J E. SnRK1 and trehalose 6-phosphate-two ancient pathways converge to regulate plant metabolism and growth. Current Opinion in Plant Biology, 2020, 55: 52-59
[61] Jia H, Li M, Li W, Liu L, Jian Y, Yang Z, Shen X, Ning Q, Du Y, Zhao R, Jackson D, Yang X, Zhang Z. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nature Communications, 2020, 11(1): 1-11
[62] Li M, Zhao R, Du Y, Shen X, Ning Q, Li Y, Liu D, Xiong Q, Zhang Z. The coordinated KNR6-AGAP-ARF1 complex modulates vegetative and reproductive traits by participating in vesicle trafficking in maize. Cells, 2021, 10(10): 260
[63] Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, Sugiyama M, Fukuda H. VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development, 2005, 132(7): 1699-1711
[64] Zhuang X, Jiang J, Li J, Ma Q, Xu Y, Xue Y, Xu Z, Chong K. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. The Plant Journal, 2006, 48(4): 581-591
[65] Majerus P W, Kisseleva M V, Norris F A. The role of phosphatases in inositol signaling reactions. Journal of Biological Chemistry, 1999, 274(16): 10669-10672
[66] Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T, Friml J, Nakano A, Fukuda H. Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development, 2009, 136(9): 1529-1538
[67] Carland F M, Nelson T. Cotyledon vascular pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell, 2004,16(5):1263-1275
[68] Shen X, Zhao R, Liu L, Zhu C, Li M, Du H, Zhang Z. Identification of a candidate gene underlying qKRN5b for kernel row number in Zea mays L.. Theoretical and Applied Genetics, 2019, 132:3439-3448
[69] Li E, Liu H, Huang L, Zhang X, Dong X, Song W, Zhao H, Lai J. Long-range interactions between proximal and distal regulatory regions in maize. Nature Communications, 2019, 10(1): 1-14
[70] Sun Y, Dong L, Zhang Y, Lin D, Xu W, Ke C, Han L, Deng L, Li G, Jackson D, Li X, Yang F. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biology, 2020, 21(1): 1-25
[71] Savadel S D, Hartwig T, Turpin Z M, Vera D L, Lung P Y, Sui X, Blank M, Frommer W B, Dennis J H, Zhang J, Bass H W. The native cistrome and sequence motif families of the maize ear. PLoS Genetics, 2021, 17(8): e1009689
[72] Parvathaneni R K, Bertolini E, Shamimuzzaman M, Vera D L, Lung P Y, Rice B R, Zhang J, Brown P J, Lipka A E, Bass H W, Eveland A L. The regulatory landscape of early maize inflorescence development. Genome Biology, 2020, 21(1): 1-33
[73] Van de Poel B, Smet D, Van Der Straeten D. Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiology, 2015, 169(1): 61-72
[74] Liu L, Gallagher J, Arevalo E D, Chen R, Skopelitis T, Wu Q, Bartlett M, Jackson D. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nature Plants, 2021, 7(3): 287-294
[75] Xu X, Crow M, Rice B R, Li F, Harris B, Liu L, Arevalo E D, Lu Z, Wang L, Fox N, Wang X, Drenkow J, Luo A, Char S N, Yang B, Sylvester A W, Gingeras T R, Schmitz R J, Jackson D. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Developmental Cell, 2021, 56(4): 557-568
PDF(916 KB)

文章所在专题

玉米

83

Accesses

0

Citation

Detail

段落导航
相关文章

/