大豆蛋白质含量相关位点qPRO-19-1的精细定位

刘亭萱,郭兵福,栾晓燕,王俊,邱丽娟

植物遗传资源学报. 2022, 23(6): 1718-1725,1736

PDF(5949 KB)
PDF(5949 KB)
植物遗传资源学报 ›› 2022, Vol. 23 ›› Issue (6) : 1718-1725,1736. DOI: 10.13430/j.cnki.jpgr.20220519001
论文

大豆蛋白质含量相关位点qPRO-19-1的精细定位

  • 刘亭萱1,2, 郭兵福3, 栾晓燕4, 王俊1, 邱丽娟2
作者信息 +

Fine Mapping of the Protein-related Locus qPRO-19-1 in Soybean

  • LIU Ting-Xuan1,2, GUO Bing-fu3, LUAN Xiao-yan4, WANG Jun1, QIU Li-Juan2
Author information +
History +

摘要

大豆是人类膳食蛋白的主要来源之一,提高大豆蛋白含量是主要的育种目标。因此,挖掘调控大豆蛋白质含量的关键基因,对高蛋白大豆品种的定向选育有重要意义。本研究以中黄35和十胜长叶为亲本,构建了F2:16与F2:17重组自交系(Recombination Inbred Lines, RIL)群体,以前期定位的蛋白含量新位点 qPRO-19-1为基础,对区间内基因测序,发现Glyma.19g223300在亲本间有1个InDel变异并开发标记IN-1,同时从区间内22个SSR标记中筛选出5个多态性标记,通过整合基因型和蛋白含量表型数据,将定位区间qPRO-19-1从384 kb缩小到68.03kb,包括注释基因4个,其中Glyma.19g221800和Glyma.19g222000两个基因在种子不同发育时期存在极显著的表达差异。研究结果为该大豆蛋白含量相关基因的图位克隆及分子标记辅助育种提供了参考。

Abstract

Soybean () is one of the main sources supplying human dietary protein, and increasing its protein content is one of major targets in soybean breeding. Identification of the genes modulating the protein content is of great significance in breeding of soybean varieties with higher protein content. In this study, the F2:16 and F2:17 recombinant inbred lines (RIL) populations derived from ‘Zhonghuang 35’ and ‘Tokachi nagaha’ were applied to delimit the previously-mapped protein content locus qPRO-19-1. By sequencing the candidate genes in the interval, an InDel marker in Glyma.19g223300 between parents and five polymorphic markers from 22 SSR markers were developed. The physical interval harboring qPRO-19-1 was further delimited from 384 kb to 68.03 kb, including four annotated candidate genes, of which Glyma.19g221800 and Glyma.19g222000 showed extremely significant difference on transcript level at different stages of seed development. These results provided a basis for future map-based cloning and molecular marker-assisted breeding of this protein content-related gene in soybean.

关键词

大豆;蛋白含量;精细定位

Key words

soybean / protein content / fine mapping

引用本文

导出引用
刘亭萱,郭兵福,栾晓燕,王俊,邱丽娟. 大豆蛋白质含量相关位点qPRO-19-1的精细定位. 植物遗传资源学报. 2022, 23(6): 1718-1725,1736 https://doi.org/10.13430/j.cnki.jpgr.20220519001
LIU Ting-Xuan,GUO Bing-fu,LUAN Xiao-yan,WANG Jun and QIU Li-Juan. Fine Mapping of the Protein-related Locus qPRO-19-1 in Soybean. Journal of Plant Genetic Resources. 2022, 23(6): 1718-1725,1736 https://doi.org/10.13430/j.cnki.jpgr.20220519001

参考文献

[1] Zhang Y H, Liu M F, He J B, Wang Y F, Xing G N, Li Y, Yang S P, Zhao T J, Gai J Y. Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) merr.]. Theoretical and Applied Genetics, 2015, 128(6): 1061-1072
[2] 王军, 张海生, 李方舟, 古晓红, 杨婷婷. 大豆蛋白质的开发与利用. 农产品加工, 2020, 5: 11-13Wang J, Zhang H S, Li F Z, Gu X H, Yang T T. Development and utilization of soybean protein. Farm Products Processing, 2020, 5: 11-13
[3] 李琼, 刘强, 杨青春, 舒文涛, 李金花, 常世豪, 张东辉, 张保亮, 张来成, 耿臻. 大豆高蛋白基因分子标记辅助育种的应用. 山西农业科学, 2020, 48(8): 1192-1197Li Q, Liu Q, Yang Q C, Su W T, Li J H, Chang S H, Zhang D H, Zhang B L, Zhang L C, Geng Z. Application of molecular marker assisted bredding of soybean high protein gene. Journal of Shanxi Agricultural Sciences, 2020, 48(8): 1192-1197
[4] Helms T C, Orf J H. Protein, oil, and yield of soybean lines selected for increased protein. Crop Science, 1998, 38(3): 707-711
[5] Cober E R, Voldeng H D. Developing high-protein, high-yield soybean populations and lines. Crop Science, 2000, 40(1): 39-42
[6] Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Science, 2005, 45(5): 2015-2022
[7] 魏荷, 王金社, 卢为国. 大豆籽粒蛋白质含量分子遗传研究进展. 中国油料作物学报, 2015, 37(3): 394-400Wei H, Wang J S, Lu W G. Molecular genetic advances in soybean seed protein. Chinese Journal of Oil Crop Sciences, 2015, 37(3): 394-400
[8] Fliege C, Ward R A, Vogel P, Nguyen H, Quach T, Guo M, Vianna J P J, Santos L B D, Specht J E, Clemente T E. Fine mapping and cloning of the major seed protein QTL on soybean chromosome 20. The Plant Journal, 2022, 110(1): 114-128
[9] Wang S D, Liu S L, Wang J, Yokosho K, Zhou B, Yu Y C, Liu Z, Frommer W B, Ma J F, Chen L Q, Guan Y F, Shou H X, Tian Z X. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. National Science Review, 2020, 7(11): 1776-1786
[10] Csanadi G, Vollmann J, Stift G, lelley T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theoretical and Applied Genetics, 2001, 103(6): 912-919
[11] Warrington C V, Abdel-Haleem H, Hyten D L, Cregan P B, Orf J H, Killam A S, Bajjalieh N, Li Z, Boerma H R. QTL for seed protein and amino acids in the Benning×Danbaekkong soybean population. Theoretical and Applied Genetics, 2015, 128(5): 839-850
[12] Pandurangan S, Pajak A, Molnar S J, Cober E R, Dhaubhadel S, Hernández-Sebastià C, Kaiser W M, Nelson R L, Huber S C, Marsolais F. Relationship between asparagine metabolism and protein concentration in soybean seed. Journal of Experimental Botany, 2012, 63(8): 3173-3184
[13] Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theoretical and Applied Genetics, 2004, 108(6): 1131-1139
[14] 陈庆山, 张忠臣, 刘春燕, 王伟权, 李文滨. 应用Charleston×东农594重组自交系群体构建SSR大豆遗传图谱. 中国农业科学, 2005, 38(7): 1312-1316Chen Q S, Zhang Z C, Liu C Y, Wang W Q, Li W B. Construction and analysis of soybean genetic map using recombinant inbred line of Charleston×Dongnong594. Scientia Agricultura Sinica, 2005, 38(7): 1312-1316
[15] Li X Y, Wang P, Zhang K X, Liu S L,Qi Z Y, Fang Y L, Wang Y, Tian X C, Song J, Wang J J, Yang C, Sun X, Tian Z X, Li W X, Ning H L. Fine mapping QTL and mining genes for protein content in soybean by the combination of linkage and association analysis. Theoretical and Applied Genetics, 2021, 134(4): 1-28
[16] Jun T H, Van K J, Kim M Y, Lee S H, Walker D R. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 2008, 162(2): 179-191
[17] Lu W, Wen Z, Li H, Yuan D H, Li J Y, Zhang H, Huang Z W, Cui S Y, Du W J. Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theoretical and Applied Genetics, 2013, 126(2): 425~433.
[18] 武阳春, 郭兵福, 谷勇哲, 栾晓燕, 邱红梅, 刘鑫磊, 李海燕, 邱丽娟. 大豆蛋白含量新位点qpro-19-1的定位. 植物遗传资源学报, 2021, 22(1): 139-148Wu Y C, Guo B F, Gu Y Z, Luan X Y, Qiu H M, Liu X L, Li H Y, Qiu L J. Mapping of a new quantitative locus qPRO-19-1 associated with seed crude protein content in soybean(Glycine max l.). Journal of Plant Genetic Resources, 2021, 22(1): 139-148
[19] Doyle J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12(13): 39-40
[20] 张焕, 仇忠凯, 阎新, 欧阳解秀, 李绍波, 王鑫. 水稻种子特异表达基因OsEnS38的克隆与表达. 湖南农业大学学报, 2018, 44(3): 278-283Zhang H, Qiu Z K, Yan X, OuYang J X, Li S B, Wang X. Cloning and expression analysis of a seed-sprcific gene OsEnS38 in rice. Journal of Hunan Agricultural University, 2018, 44(3): 278-283
[21] 胡国华, 宁海龙, 王寒冬, 王继安, 张大勇, 李文滨. 光照强度对大豆产量及品质的影响Ⅰ.全生育期光照强度变化对大豆脂肪和蛋白质含量的影响. 中国油料作物学报, 2004, 26(2): 87-89Hu G H, Ning H L, Wang H D, Wang J A, Zhang D Y, Li W B. Effect of photo-intensity on quality and yield of soybeans I. Effect of light-intensity on oil content and protein content of soybeans in the whole growth period. Chinese Journal of Oil Crop Sciences, 2004, 26(2): 87-89
[22] 宋旭, 李志刚, 马日亮.不同栽培密度对大豆产量、脂肪和蛋白质含量的影响. 内蒙古农业科技, 2009, 2: 29-30Song X, Li Z G, Ma R L. Effect of different planting density on yield, fat and protein content of soybean. Journal of Northern Agriculture, 2009, 2: 29-30
[23] 闫晓艳, 邱强, 刘凤珍, 石一鸣, 唐晓博. 不同类型大豆品种鼓粒至成熟期脂肪和蛋白质相对积累规律初探. 吉林农业大学学报, 2006, 28(5): 473-477Yan X L, Qiu Q, Liu F Z, Shi Y M, Tang X B. An initial study on relative accumulative rule of oil and protein contained in different soybean varieties from beginning seed to maturity. Journal of Jilin Agricultural University, 2006, 28(5): 473-477
[24] 蒋跃林, 张仕定, 岳伟, 姚玉刚, 张庆国. 大气CO2浓度增加对大豆籽粒品质的影响. 中国粮油学报, 2005, 5: 89-92Jiang Y L, Zhang S D, Yue W, Yao Y G, Zhang Q G. Effects of free CO2 enrichment on grain quality of soybean. Journal of the Chinese Cereals and Oils, 2005, 5: 89-92
[25] 杜佳兴, 刘婧琦, 盖志佳, 蔡丽君, 顿国强, 张敬涛. 播期对高蛋白大豆籽粒品质及产量的影响. 中国农学通报, 2019, 35(35): 31-34Du J X, Liu J Q, Gai Z J, Cai L J, Dun G Q, Zhang J T. Sowing dates affect seed quality and yield of high protein soybean. Chinese Agricultural Science Bulletin, 2019, 35(35): 31-34
[26] 王鹏, 侯思宇, 武艳杏, 李贵全. 基于农艺性状的大豆种质资源多样性分析及评价. 山西农业科学, 2021, 49(9): 1025-1030Wang P, Hou S Y, Wu Y X, Li G Q. Diversity analysis and comprehensive evaluation of soybean germplasm resources based on agronomic traits. Journal of Shanxi Agricultural Sciences, 2021, 49(9): 1025-1030
[27] 王树宇, 付连舜, 刘德恒, 董友魁. 积温、降水量和日照对大豆主要农艺性状和品质的影响. 农业开发与装备, 2013, 5: 42-43
[28] Lu W G, Wen Z X, Li H C, Yuan D H, Li J Y, Zhang H, Huang Z W, Cui S Y, Du W J. Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theoretical and Applied Genetics, 2013, 126(2): 425-433
[29] Diers B W, Keim P, Fehr W R, Shoemaker R C. RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics, 1992, 83(5): 608-612
[30] Tajuddin T, Watanabe S, Masuda R, Harada K, Kawano S. Application of near infrared transmittance spectroscopy to the estimation of protein and lipid contents in single seeds of soybean recombinant inbred lines for quantitative trait loci analysis. Journal of Near Infrared Spectroscopy, 2002, 10(4): 315-325
[31] Mao T T, Jiang Z F, Han Y P, Teng W L, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breeding, 2013, 132(6): 630-641
[32] Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Science, 1996, 36(5): 1327-1336
PDF(5949 KB)

43

Accesses

0

Citation

Detail

段落导航
相关文章

/