To illustrate the regulation mechanism of parthenocarpy and the genes controlling this process, as well as provide basic materials in eggplant parthenocarpy breeding, the parthenocarpy/non parthenocarpy near isogenic lines were constructed in this study. Two groups of near isogenic lines (NILs) JDX1 and JDX8 were generated by hybridization, backcross and selfing, in combination with parthenocarpy identification and agronomic traits investigation. 219 pairs of SSR primers covering eggplant genome were used to genotype eggplant NILs and their parents. JDX1 and JDX8 showed 97.14% and 88.23% on the genetic similarity with respective reincarnation parents, respectively. The parthenocarpy identification showed that, in difference with recurrent parents, JDX1 and JDX8 had been completely transformed into non parthenocarpic lines. There were no significant differences in plant height, first flower height, node spacing, leaf length and width, fruit length and thickness between NILs and their recurrent parents. By considering the agronomic characteristics such as fruit color and strain type, JDX1 and JDX8 showed higher similarity/identity with the reincarnation parent. Collectively, the success on creation of eggplant parthenocarpy lines laid a foundation for the basic research of single solidity.
ZHOU Shan-shan,YANG Yang,Tang Xiao-hua,TAO Tao,WANG Yong-qing,ZOU Min and TIAN Shi-bin.
Construction and Genetic Background Analysis of Eggplant Near-isogenic Lines. Journal of Plant Genetic Resources. 2022, 23(5): 1343-1351 https://doi.org/10.13430/j.cnki.jpgr.20220309001
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Orlando A , Nair R , Ricardo P D, Mónica Y, Jaime T, Yerko M, Simón R L, Enrique G. Pollen morphology and boron concentration in floral tissues as factors triggering natural and GA-Induced parthenocarpic fruit development in grapevine . PLoS One, 2015, 10 (10) e0139503 [2] Mariano F, Fernando N, Jose′L.G M. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries . Plant Physiology, 2000, 122(2): 471-480 [3] Kelsey D G, Daniel G B, Chris D, Liu Z C, Ann M C. Gibberellic acid induced parthenocarpic 'Honeycrisp' apples (Malus domestica) exhibit reduced ovary width and lower acidity. Horticulture research, 2019, 6: 41 [4] Aparna T, AdamV S, Roeland E V, Myckel EJ H, Lin B X, Remko O, Ep Heuvelink. Parthenocarpic potential in Capsicum annuum L. is enhanced by carpelloid structures and controlled by a single recessive gene. BMC Plant Biology, 2011, 11(1): 143-143 [5] 刘富中, 连勇, 陈钰辉, 宋燕. 温度和蕾期去雄及去柱头处理对茄子单性结实性的影响. 园艺学报, 2005, 32(6): 1021-1025Liu F Z, Lian Y, Chen Y H, Song Y. The effect of temperature and bud stage treatment on parthenocarpic gene expression of eggplant. Acta Horticulturae Scinica, 2005, 32(6): 1021-1025 [6] 刘富中, 舒金帅, 张映, 陈钰辉, 连勇, 田时炳. “十三五”我国茄子遗传育种研究进展. 中国蔬菜, 2021, (3): 17-27Liu F Z, Shu J S, Zhang Y, Chen Y H, Lian Y, Tian S B. Research progress of eggplant genetics and breeding in China during the'13th five year plan'. China Vegetables, 2021, (3): 17-27 [7] Lorenzo B, Marco P, Luca V, Andrea M, Laura T, Alberto A. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific reports, 2019, 9(1) : 11769 [8] Li D, Qian J, Li W, Jiang Y, Gan G, Li W. Genome sequence and analysis of the eggplant (Solanum melongena L.) . BioRxiv, 2019 [9] 郭亚鹤, 赵祯, 张映, 陈钰辉, 连勇, 刘富中. 茄子单性结实基因SmMsrA的功能分析. 中国园艺学会第十三次全国会员代表大会暨2017年学术年会. 中国云南昆明, 2017, 121Guo Y H, Zhao Z, Zhang Y, Chen Y H, Lian Y, Liu F Z. Functional analysis of eggplant parthenocarpy SmMsrA. The 13th National Member Congress and2017 academic annual meeting of China Horticultural Society, Kunming Yunnan China, 2017, 121 [10] 赵祯, 刘富中, 张映, 齐东霞, 陈钰辉, 连勇. 茄子SmMsrA基因VIGS表达载体的构建及表达分析. 园艺学报, 2015, 42:1495-1499Zhao Z, Liu F Z, Zhang Y, Qi D X, Chen Y H, Lian Y. VIGS expression vector construction and expression analyses of SmMsrA gene in eggplant. Acta Horticulturae Sinica, 2015, 42:1495-1499 [11] 张伟伟, 刘富中, 张映, 赵祯, 陈钰辉, 连勇. 茄子生长素诱导基因SmIAA19的克隆和分析. 园艺学报, 2014, 41:2231-2240Zhang W W, Liu F Z, Zhang Y, Zhao Z, Chen Y H, Lian Y. Cloning and Characterization of IAA Family Gene SmIAA19 in Eggplant. Horticulturae Sinica, 2014, 41:2231-2240 [12] 张立慧. 茄子单性结实相关基因的克隆及表达分析. 重庆: 西南大学; 2016Zhang L H. Cloning and expression analysisi of genes ralated with parthenocarpy in Solanum melongena L[D] .Chongqing: Southwest University ;2016. [13] Liming D, Chonglai B, Tianhua H, Qinmei Z, Haijiao H, Qunyan H. SmARF8, a transcription factor involved in parthenocarpy in eggplant. Molecular genetics and genomics, 2016, 291(1): 93-105 [14] Barbara M, Tiziana P, Leonardo R G, Valeria D, Angelo S. Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant physiology, 2009, 149: 534 - 548 [15] Cristina M, Diego O, Philippe E, Vicente M, Juan C, Antonio G. Silencing of DELLA induces facultative parthenocarpy in tomato fruits. The Plant journal : for cell and molecular biology, 2007, 52: 865–876 [16] 陈露露, 李香景, 张映, 陈钰辉, 舒金帅, 刘富中. 茄子(Solanum melongena) MADs-box家族基因SmAGL9的克隆与表达分析. 分子植物育种, 1-17.Chen L L, Li X J, Zhang Y, Chen Y H, Shu J S, Liu F Z. Cloning and analysis of parthenocarpic gene SmAGL9 in Solanum melongena. Molecular Plant Breeding, 1-17. [17] Satoshi M, Koji M, Makoto E, Soichi U, Takaaki K, Satomi N, Satoshi S, Hiroyuki F. Science; Report Summarizes Science Study Findings from National Agriculture and Food Research Organization (NARO) (Loss of function of the Pad-1 aminotransferase gene, which is involved in auxin homeostasis, induces parthenocarpy in Solanaceae plants) . Science Letter, 2020, 117(23):12784-12790 [18] Giacomo MD, Luciani MD, Cambiaso V, Zorzoli R, Rodríguez GR, Costa JHPd. Tomato near isogenic lines to unravel the genetic diversity of S. pimpinellifolium LA0722 for fruit quality and shelf life breeding. Euphytica: International Journal of Plant Breeding, 2020, 216(8): 1172-48 [19] 柳海东, 赵绪涛, 杜德志. 利用QTL-seq技术定位甘蓝型春油菜早花位点cqDTFC8及其近等基因系构建. 植物生理学报. 2020, 56:219-234.Liu H D, Zhao X T, Du D Z. Mapping of early flowering site cqDTFC8 using QTL-seq technique and construction of its near-isogenic lines in Brassica napus. Plant Physiology Journal, 2020, 56 (2): 219–234 [20] 徐巍. 番茄低温下矮化坏死调控基因ndw的克隆及功能鉴定. 新疆: 石河子大学; 2021XU W. Cloning and functional characterization of ndw gene regulating necrosis and dwarf in tomato under low temperature[D]. Xinjiang: Shihezi University; 2021 [21] 宋佳. 番茄开花时间调控基因FTL1的图位克隆与功能分析. 北京: 中国农业科学院; 2020SONG J. Map-based Cloning and Functional Analysis of the Flowering Gene FTL1 in Tomato.Beijin: Chinese Academy of Agricultural Sciences; 2020 [22] Paran I, Kesseli R, Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near-isogenic lines. Genome, 1991, 34(6): 1021-1027 [23] Rotino G L, Perri E, Zottini M. Genetic engineering of parthenocarpic plants. Nature Biotechnology, 1997, 15(13):1398-1401 [24] 田时炳, 刘富中, 王永清, 罗章勇, 陈义康, 刘君绍. 茄子单性结实性的遗传分析. 园艺学报, 2003, 30(4): 413-416Tian S B, Liu F Z, WANg Y Q, Luo Z Y, Chen Y K, Liu J S. Genetic analysis of parthenocarpy in eggplant. Acta Horticulturae Sinica, 2003, 30(4):413-416 [25] 刘富中, 万翔, 陈钰辉, 连勇, 宋明. 茄子单性结实基因的遗传分析及AFLP分子标记. 园艺学报, 2008, 35(9):1305-1309Liu F Z, Wang X, Chen Y H, Lian Y. Inheritance of the eggplant parthenocarpy and AFLP molecular marke. Acta Horticulturae Sinica, 2008,35(9):1305-1309 [26] Kuno S, Yabe K. Genetic analysis of parthenocarpy and spineless in the F2 segregating . Research Bulletin of the Aichi-ken Agricultural Research Center (Japan), 2005, 37:29-33 [27] 王振. 玉米不育系回交转育中利用SSR标记进行背景选择效果的研究. 黑龙江八一农垦大学; 2015Wang Z. The background selection research of Maize sterile lines backcross breeding by SSR markers. Heilongjiang Bayi Agricultural University; 2015 [28] 龙卫华, 胡茂龙, 高建芹, 浦惠明, 陈松, 张洁夫, 戚存扣. 油菜MICMS恢复基因近等基因系的构建与近等性分析. 分子植物育种, 2011, 9(3):261-269Long W H, Hu M H, Gao J Q, Pu H M. Construction and allelic analysis of the restorer gene near-isogenic Lines of the MICMS system in Brassica napus. Molecular Plant Breeding, 2011, 9(3):261-269 [29] 刘紫君, 咸拴狮, 王耀辉, 范建春, 王景雪, 杜春芳. 甘蓝型油菜高/低含油量近等基因系构建及鉴定. 华北农学报, 2016, 31(05):129-133Liu Z J, Xian S S, Wang Y H, Fan J C, Wang J X, Du C F. Construction and identification of near-isogenic lines of high /low oil content in Brassica napus L . Acta Agriculturae Boreali-sinica, 2016, 31(05):129-133