宁夏小麦种质资源粒重基因 KASP 标记检测及验证

张维军,赵俊杰,何进尚,郝晨阳,王小亮,亢玲,张富国,张学勇,陈东升

植物遗传资源学报. 2022, 23(2): 493-504

PDF(8463 KB)
PDF(8463 KB)
植物遗传资源学报 ›› 2022, Vol. 23 ›› Issue (2) : 493-504. DOI: 10.13430/j.cnki.jpgr.20211225001
论文

宁夏小麦种质资源粒重基因 KASP 标记检测及验证

  • 张维军1, 赵俊杰2, 何进尚1, 郝晨阳3, 王小亮1, 亢玲1, 张富国4, 张学勇3, 陈东升1
作者信息 +

Detection and Validation of Grain Weight Related Genesusing KASP Assays in Ningxia Wheat Germplasm

  • ZHANG Wei-jun1, ZHAO Jun-jie2, HE Jin-shang1, HAO Chen-yang3, WANG Xiao-liang1, KANG Ling1, ZHANG Fu-guo4, ZHANG Xue-yong3, CHEN Dong-shen1
Author information +
History +

摘要

为挖掘高粒重小麦种质资源,连续 2 年在宁夏引黄灌区生态条件下测定了 209 份小麦种质资源的千粒重、粒长、 粒宽和粒厚 4 个籽粒相关性状,同时用 4 个粒重相关基因 TaGW2-6B、TaGASR、TaGS-D1 和 TaCWI-4A 的 KASP 标记对参 试材料进行基因型检测。结果表明,宁夏小麦种质资源籽粒表型性状较丰富。千粒重、粒长、粒宽和粒厚分布范围分别为 29.73~56.25 g、5.82~7.57 mm、2.87~3.83 mm 和 2.74~3.55 mm。4 个基因标记分别将参试材料区分为两种单倍型:TaGW2-6B 将参试材料区分为 Hap-6B-1 和 Others 两种单倍型,其中优异单倍型 Hap-6B-1 的频率为 62.44%;TaGASR 将参试材料区分 为 H1c 和 H1c/H1g 两种单倍型,其中优异单倍型 H1c 频率为 93.10%;TaCWI-4A-1523 将参试材料区分为 Hap-4A-C 和 Hap- 4A-T 两种单倍型,其中优异单倍型 Hap-4A-C 频率为 76.41%;TaGS-D1 将参试材料区分为 TaGS-D1a 和 TaGS-D1b 两种单 倍型,其中优异单倍型 TaGS-D1a 频率为 86.50%。TaGW2-6B 与千粒重显著相关,与粒宽和粒厚极显著相关;TaGASR 与千粒 重和粒长极显著相关,与粒宽显著相关;TaCWI-4A 与千粒重、粒宽和粒厚显著相关。宁夏小麦种质资源粒重基因主要包括 7 种优异单倍型组合,其中,Hap-6B-1+H1c+Hap-4A-C+TaGS-D1a 组合对千粒重、粒宽和粒厚有显著的正向调控作用,Hap-4AC+TaGS-D1a 组合对粒长有显著的正向调控作用。因此,在宁夏引黄灌区生态条件下 TaGW2-6B、TaGASR 和 TaCWI-4A 能够 较好地区分小麦粒重大小,可用于粒重性状选择。在 209 份参试材料中,共筛选到 14 份千粒重大于 50 g 的高粒重材料,其中 有 9 份材料聚合了 4 个粒重相关基因的优异单倍型。

Abstract

To analyze the yield potential of common wheat(Triticum aestivum L.)using high-grain weight germplasm resources in Ningxia,here we conducted the field trials for detecting grain weight under the ecological conditions of the Yellow River irrigation area,as well as marker-assisted analysis using four functional KASP markers TaGW2-6B,TaGASR,TaGS-D1 and TaCWI-4A. Four grain-related traits consisting of the thousand-kernel weight(TKW),kernel length(KL),kernel width(KW)and kernel thickness (KT)of 209 wheat germplasm resources were measured for 2 consecutive years. The results showed that wheat germplasm resources had abundant diversity on grain-related traits. The distribution ranges of TKW,KL,KW and KT values were 29.73-56.25 g,5.82-7.57 mm,2.87-3.83 mm and 2.74-3.55 mm,respectively. For TaGW2-6B,two haplotypes (Hap-6B-1 and Others)were detected,while the elite haplotype Hap-6B-1 accounted for 62.44%. For TaGASR two haplotypes(H1c and H1c/H1g)were detected,while haplotype H1c accounted for 93.10%. Two haplotypes Hap-4A-C and Hap-4A-T at TaCWI-4A-1523 were revealed,and the elite haplotype Hap-4A-C accounted for 76.41%. Two haplotypes TaGS-D1a and TaGS-D1b at the TaGS-D1 were revealed,and the elite haplotype TaGS-D1a accounted for 86.50%. The locus TaGW2-6B was found to be significantly correlated with TKW and extremely significantly correlated with KW and KT. TaGASR was found to be significantly correlated with TKW, KL and KW. TaCWI-4Awas found to be significantly correlated with TKW,KW and KT. Based on the genotyping results,seven haplotype combinations were revealed. The combination of Hap-6B-1+H1c+Hap-4A-C+TaGSD1a represented a significant positive effect on TKW,KW and KT,while the combination of Hap-4A-C+TaGSD1a represented a significant positive effect on KL. Taken together,three genes TaGW2-6B,TaGASR and TaCWI- 4Amight become elite makers on selection of the wheat grain weight under the ecological conditions of the Yellow River irrigation area in Ningxia. Out of 209 tested genotypes,14 high-grain weight genotypes(1000-kernel weight > 50 g)were identified,and nine of them have stacked elite haplotypes of four grain weight-related genes.

关键词

宁夏小麦;籽粒性状;粒重相关基因;KASP标记

Key words

Ningxia wheat;grain characters;grain weight-related genes;KASP assays

引用本文

导出引用
张维军,赵俊杰,何进尚,郝晨阳,王小亮,亢玲,张富国,张学勇,陈东升. 宁夏小麦种质资源粒重基因 KASP 标记检测及验证. 植物遗传资源学报. 2022, 23(2): 493-504 https://doi.org/10.13430/j.cnki.jpgr.20211225001
ZHANG Wei-jun,ZHAO Jun-jie,HE Jin-shang,HAO Chen-yang,WANG Xiao-liang,KANG Ling,ZHANG Fu-guo,ZHANG Xue-yong and CHEN Dong-shen. Detection and Validation of Grain Weight Related Genesusing KASP Assays in Ningxia Wheat Germplasm. Journal of Plant Genetic Resources. 2022, 23(2): 493-504 https://doi.org/10.13430/j.cnki.jpgr.20211225001

参考文献

[1] 李振声. 我国小麦育种的发展历程[J]. 中国农村科技, 2010, Z1: 26-28.Li Z S. Development of wheat breeding in China. Chian Rural Science and Technology, 2010, Z1: 26-28.
[2] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望[J]. 作物学报, 2011, 37: 202-215.He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agronomical Sinica, 2011, 37(2): 202-215.
[3] He Z H, Rajaram S, Xin Z Y, Huang G Z. A History of Wheat Breeding in China[J]. Mexieo: CIMMYT, 2001: 6-8.
[4] 张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路[J]. 中国农业科学, 2006, 39(8): 1526-1535.Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping: A new approach for discovering agronomic important genes[J]. ScientiaAgricultura Sinica, 2006, 39(8): 1526-1535.
[5] 宋健民, 戴双, 李豪圣, 程敦公, 刘爱峰, 曹新有, 刘建军, 赵振东. 山东省近年来审定小麦品种农艺和品质性状演变分析[J]. 中国农业科学, 2013, 46(6): 1114-1126.Song J M, Dai S, Li H S, Cheng D G, Liu A F, Cao X Y, Liu J J, Zhao Z D. Evolution of agronomic and quality traits of wheat cultivars released in Shandong province recently[J]. Scientia Agricultura Sinica, 2013, 46(6): 1114-1126.
[6] 曹廷杰. 河南省近二十年来小麦育成品种主要农艺性状遗传演变规律[D]. 郑州: 河南农业大学, 2009.Cao T J. Evolution of main agronomic traits for wheat improved varieties in Henan province in the past twenty years[D]. Zhengzhou: Henan Agricultural University, 2009.
[7] 李红霞, 方亮, 魏亦勤, 裘敏, 张双喜, 刘旺清, 王平. 宁夏五十年来春小麦主栽品种农艺性状和品质性状演变[J]. 种子, 2007, 26(3): 63-66.Li H X, Fang L, Wei Y Q, Qiu M, Zhang S X, Liu W Q, Wang P. Development of Agronomic Traits and Quality Traits in Main Cultivars of Spring Wheat from Ningxia in the Past 50 years[J]. Seed, 2007, 26(3): 63-66.
[8] 庄巧生. 中国小麦品种改良及系谱分析[C]. 北京: 中国农业出版社, 2003.Zhuang Q S. Wheat Improvement and Pedigree Analysis in China[C]. Beijing: Chinese Agricultural Press, 2003.
[9] Campbell K G, Bergman C J, Gualberto D G, Anderson J A, Giroux M J, Hareland G, Fulcher R G, Sorrells M E, Finney P L. Quantitative trait loci associated with kernel traits in a soft/hard wheat cross[J]. Crop Science, 1999, 39(6): 1184-1195.
[10] Dholakia B B, Ammiraju J S S, Singh H, Lagu M D, R?der M S, Rao V S, Dhaliwal H S, Ranjekar P K, Gupta V S, Weber W E. Molecular marker analysis of kernel size and shape in bread wheat[J]. Plant Breeding, 2003, 122(5): 392-395.
[11] Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, Barret P, Bouzidi M F, Mouzeyar S. Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat[J]. J Exp Bot, 2012, 63:5945-5955.
[12] Giura A, Saulescu N N. Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.)[J]. Euphytica, 1996, 89(1):77-80.
[13] Li Q F, Zhang Y, Liu T T, Wang F F, Liu K, Chen J S, Tian J C. Genetic analysis of kernel weight and kernel size in wheat(Triticunaestivum L.) using unconditional and conditional QTL mapping[J]. Molecular Breeding. 2015, 35(194): 2-15.
[14] Hanif M, GAO F M, LIU J D, Wen W E, Zhang Y J, Rasheed A, Xia X C, He Z H, Cao S H.TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat[J]. Molecular Breeding, 2016, 36(1): 1-8.
[15] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of afunctional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2011, 122: 211-223.
[16] Qin L, Hao C Y, Hou J, Wang Y Q, Li T, Wang L F, Ma Z Q, Zhang. X Y Homoeologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2[J]. BMC plant biology, 2014, 14:107.
[17] Qin L, Zhao J. J, Li T, Hou J, Zhang X Y, Hao C Y. TaGW2, a good reflection of wheat polyploidization and evolution[J]. Frontiers Plant Science, 2017, 8: 318.
[18] Cho J I, Lee S K, Ko S, Kim H K, Jun S H, Lee Y H, Bhoo S H, Lee K W, An G, Hahn T R, Jeon J S. Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Ortza sativa L.)[J]. Plant Cell Reports, 2005, 24: 225-236.
[19] Ma D Y , Yan J, He Z H, Wu L, Xia X C. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers[J]. Mol Breeding, 2012, 29 (1):43-52.
[20] Jiang Y M, Jiang Q Y, Hao C Y, Hou J, Wang L F, Zhang H N, Zhang S N, Chen X H, Zhang X Y. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis[J]. Theoretical and Applied Genetics, 2015, 128: 131-143.
[21] Zhang Y J, Liu J D, Xia X C, He Z H. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat[J]. Mol Breeding, 2014,34:1097-1107.
[22] Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nature Genetics,2012,44(1): 32-39
[23] Dong L L, Wang F M, Liu T, Dong Z Y, Li A L, Jing R L, Mao L, Li Y W, Liu X, Zhang K P, Wang D W. Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions[J]. Mol. Breeding. 2014, 34, 937-947.
[24] Xu Y, Crouch J H. Marker assisted selection in plant breeding: from publications to practice[J]. Crop Science, 2008, 48(2): 391-407.
[25] Wang M, Na D C, Ji H T, Zhang D Y. A simple and quick method of extracting genomic DNA from wheat leaves[J]. Agricultural Science &TechnologuTechnology, 2009, 10(5): 34, 35.
[26] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Developmentand validation of KASP assays for genes underpinning key economic traits in bread wheat[J]. Theoretical and Applied Genetics, 2016, 129 (10): 1843-1860.
[27] 刘志勇, 王道文, 张爱民, 梁翰文, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才. 小麦育种行业创新现状与发展趋势[J]. 植物遗传资源学报, 2018, 19(3): 430-434.Liu Z Y, Wang D W, Zhang A M, Liang H W, Lv H Y, Deng X D, Ge Y Q, Wei X, Yang W C. Current status and perspective of wheat genomics, genetics, and breeding[J]. Journal of Plant Genetic Resources, 2018, 19(3): 430-434.
[28] Hanft J M, Jones R J, Stumme A B. Dry matter accumulationand carbohydrate concentration patterns of field-grown and in vitro culturedmaizekernelsfromthetipandmiddleearpositions[J].Crop Science, 1986, 26: 568-572.
[29] Miralles D J, Slafer G A. Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations[J]. Field Crops Research, 1995, 43: 55-66.
[30] 贺明荣, 王振林, 张杰昌. 小麦开花后光合物质在不同穗位间的分配及其与穗粒重的关系[J]. 作物学报, 2000, 26(2): 190-194.He M R, Wang Z L, Zhang J C. Distribution of photo as similate to different parts of wheat era after anthesis and its relation to kernel weight per era[J]. Acta Agronomica Sinica, 2000, 26(2): 190-194.
[31] Bagge M, Xia X C, Lübberstedt T. Functionalmarkers in wheat. Current Opinion Plant Biology, 2007, 10: 211-216.
[32] Mohan M, Nair S, Bhagwat A, Krishna T G, Yano M, Bhatia C R, Sasaki T. Genome mapping molecular markers and marker assisted selection in crop plants[J]. Molecular Breeding, 1997( 3): 87-103.
[33] 刘永伟, 周硕, 王雪征,孙果忠, 朱金永, 韩秋芬, 李春杰, 赵和, 王海波. 粒重基因TaCWI-A1等位变异在黄淮麦区小麦品种(系)中的分布及功能分析[J]. 华北农学报, 2017, 32(2): 137.Liu Y W, Zhou S, Wang X Z, Sun G Z, Zhu J Y, Han Q F, Li C J, Zhao H, Wang H B. Distribution and functional analysis of the TaCWI-A1 allelic variation in grains of wheat in Huanghuai wheat region[J]. Acta AgricultTurae Boreali-Sinica, 2017, 32(2):137.
[34] 张维军, 赵俊杰, 何进尚, 王小亮, 亢玲, 袁汉民, 陈东升. 宁夏小麦种质资源穗发芽抗性鉴定及相关分子标记的有效性评价[J]. 麦类作物学报, 2019, 39(05): 532-539.Zhang W J, Zhao J J, He J S, Wang X L , Kang L, Yuan H M, Chen D S. Identification and Validation of Five Molecular Markers for Pre-harvest Sprouting Tolerance in Ningxia Wheat Varieties (Lines)[J]. Journal of Triticeae Crops, 2019, 39(05): 532-539.
[35] 仝靖洋, 李少鹏, 刘胜杰, 张琳雪, 梁园园, 张哲, 聂小军, 李学军, 王中华, 高欣. 麦粒重基因等位变异的高通量分子检测及组合分析[J]. 麦类作物学报, 2018, 38(11): 1300-1308.Tong J Y, Li S P, Liu S J, Zhang L X, Liang YY, Zhang Z, Nie X J, Li X J, Wang Z H, Gao X. High-Throughput Molecular Detection and Analysis of Allelic Variation Combinations Related to Grain Weight Genes of wheat (Triticum aestivum L.)[J]. Journal of Triticeae Crops, 2018, 38(11): 1300-1308.
[36] Hao C Y, Dong Y C, Wang L F, You G X, Zhang H N, Ge H M, Jia J Z, Zhang X Y. Genetic diversity and construction of core collection in Chinese wheat genetic resources[J]. Chinese Science Bulletin, 2008, 53(10):1518.
PDF(8463 KB)

文章所在专题

资源与环境

Accesses

Citation

Detail

段落导航
相关文章

/