水稻耐盐分子机制与分子改良

曲梦宇,许惠滨,陈静,梁廷敏,韩艺娟,陈燕琼,张书标,陈松彪

植物遗传资源学报. 2022, 23(3): 644-653

PDF(1304 KB)
PDF(1304 KB)
植物遗传资源学报 ›› 2022, Vol. 23 ›› Issue (3) : 644-653. DOI: 10.13430/j.cnki.jpgr.20211106002
综述

水稻耐盐分子机制与分子改良

  • 曲梦宇1, 许惠滨1, 陈静1, 梁廷敏1, 韩艺娟1, 陈燕琼1, 张书标2, 陈松彪1
作者信息 +

Molecular Mechanisms and Improvement of Salinity Tolerance in Rice

  • QU Meng-yu1, XU Hui-bin1, CHEN Jing1, LIANG Ting-min1, HAN Yi-juan1, CHEN Yan-qiong1, ZHANG Shu-biao2, CHEN Song-biao1
Author information +
History +

摘要

盐碱地是农业种植的重要后备耕地资源,但其高盐碱度特性严重制约了作物的种植。培育适宜盐碱地种植的作物, 对保障粮食安全具有重要意义。近年来,耐盐水稻成为盐碱地改良与利用的首选粮食作物,因此,耐盐性遗传改良已成为水稻 遗传育种的一个重要研究方向。高浓度盐胁迫对水稻各生育期的生长发育都会造成影响,导致水稻产量与品质显著下降。水 稻耐盐分子机制的研究对培育耐盐水稻品种具有重要指导意义。本文从离子稳态调节、渗透调节、抗氧化调节、气孔调节以及 信号分子调节等 5 个方面综述了水稻耐盐适应性分子机制研究的最新进展,进一步介绍了国内外水稻耐盐性遗传改良的情 况,并重点总结了负调控水稻耐盐性功能基因的鉴定,以及基于基因组编辑技术的水稻耐盐性分子改良;同时还探讨了未来 值得重点关注的方向及策略,以期为高效培育耐盐性强、综合性状优良的水稻品种提供参考。

Abstract

Saline-alkali field is an important reserve of arable land resource in agriculture. However,high salinity-alkalinity severely limits the cultivation of crops on saline-alkali soil. The development of crops suitable for growing in saline-alkali soil would be of significant importance in ensuring the food security. In recent years, salt-tolerant rice varieties have become primary candidates for improvement and exploitation of saline-alkali soil. Therefore,the genetic improvement of salinity tolerance has become an important research area in rice breeding. High-level salt stress inhibits the growth and development of rice at all different stages,causing significant reduction in yield and quality. Study on the molecular mechanism of salinity tolerance is of theoretical significance in guiding the development of salinity-tolerant rice varieties. In this review,we summarize the progress of studies on molecular mechanisms of salinity tolerance in rice which involve ion homeostasis regulation,osmotic regulation,antioxidant regulation,stomatal regulation,and signaling regulation. We further summarize the progress of genetic improvements of salinity tolerance in rice,especially highlighting the characterization of functional genes as negative regulators in salinity tolerance and candidates for genome editing-based molecular improvement. We also discuss future research focuses and experimental strategies that would provide a reference for developing highly salt-tolerant rice varieties with elite agronomic traits.

关键词

水稻;盐胁迫;耐盐机制;分子改良;负调控基因;基因组编辑

Key words

rice;salinity stress;salinity tolerance mechanism;molecular improvement;negatively regulatedgene;genome editing

引用本文

导出引用
曲梦宇,许惠滨,陈静,梁廷敏,韩艺娟,陈燕琼,张书标,陈松彪. 水稻耐盐分子机制与分子改良. 植物遗传资源学报. 2022, 23(3): 644-653 https://doi.org/10.13430/j.cnki.jpgr.20211106002
QU Meng-yu,XU Hui-bin,CHEN Jing,LIANG Ting-min,HAN Yi-juan,CHEN Yan-qiong,ZHANG Shu-biao and CHEN Song-biao. Molecular Mechanisms and Improvement of Salinity Tolerance in Rice. Journal of Plant Genetic Resources. 2022, 23(3): 644-653 https://doi.org/10.13430/j.cnki.jpgr.20211106002

参考文献

[1]彭既明. 耐盐(碱)水稻研发的建议. 中国稻米, 2019, 25 (1): 7-9
Peng J M. Suggestions for developing saline-alkaline tolerant rice. China Rice, 2019, 25 (1): 7-9
[2]Qin H, Li Y, Huang R. Advances and challenges in the breeding of salt-tolerant rice. International Journal of Molecular Sciences, 2020, 21(21): 8385
[3]Ponce K S, Meng L, Guo L, Leng Y, Ye G. Advances in sensing, response and regulation mechanism of salt tolerance in rice. International Journal of Molecular Sciences, 2021, 22(5): 2254
[4]袁驰, 梁永霞, 刘静, 张国川, 曾莉, 杨发友, 唐志康, 陈勇. 复盐胁迫对不同水稻品种种子萌发和幼苗生长的影响. 种子, 2018, 37(6): 78-81
Yuan C, Liang Y X, Liu J, Zhang G C, Zeng L, Yang F Y, Tang Z K, Chen Y. Effect of compound saline stress on seed germination and seedling growth of different rice varieties. Seed, 2018, 37(6): 78-81
[5]金梦野, 李小华, 李昉泽, 黄占斌. 盐碱复合胁迫对水稻种子发芽的影响. 中国生态农业学报, 2020, 28(4): 566-574
Jin M Y, Li X H, Li F Z, Huang Z B. Effects of mixed saline-alkali stress on germination of rice. Chinses Journal of Eco-Agriculture, 2020, 28 (4): 566-574
[6]Krishnamurthy S L, Sharma P C, Batra V, Kumar V, Rao L V S. Effect of salinity and use of stress indices of morphological and physiological traits at the seedling stage in rice. Indian Journal of Experimental Biology, 2016, 54(12): 843-850
[7]Chang J, Cheong B E, Natera S, Roessner U. Morphological and metabolic responses to salt stress of rice (Oryza sativa L.) cultivars which differ in salinity tolerance. Plant Physiology and Biochemistry, 2019, 144: 427-435
[8]Lekklar C, Suriya-Arunroj D, Pongpanich M, Comai L, Kositsup B, Chadchawan S, Buaboocha T. Comparative genomic analysis of rice with contrasting photosynthesis and grain production under salt stress. Genes (Basel), 2019, 10(8): 562
[9]Tsai Y C, Chen K C, Cheng T S, Lee C, Lin S H, Tung C W. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biology, 2019, 19(1): 403
[10] 王绍林, 李珣, 王彤, 刘琳琳, 纪薇薇, 于艳青, 张丽丽, 郭素华, 张战. 辽宁滨海稻区耐盐碱水稻生理基础研究. 北方水稻, 2020, 50(4): 1-7
Wang S L, Li X, Wang T, Liu L L, Ji W W, Yu Y Q, Zhang L L, Guo S H, Zhang Z. Study on physiological basis of salt-tolerant rice in Liaoning coastal rice area. North Rice, 2020, 50(4): 1-7
[11] 肖丹丹, 李军, 邓先亮, 卫平洋, 唐健, 韦还和, 陈英龙, 戴其根. 不同品种稻米品质形成对盐胁迫的响应. 核农学报, 2020, 34(8): 1840-1847
Xiao D D, Li J, Deng X L, Wei P Y, Tang J, Wei H H, Chen Y L, Dai Y L, Dai Q G. Response of quality formation of different rice varieties to salt stress. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1840-1847
[12] Verma T, Neue H. Effect of soil salinity level and zinc application on growth, yield, and nutrient composition of rice. Plant Soil, 1984, 82: 3-14
[13] Saleethong P, Sanitchon J, Kong-Ngern K, Theerakulpisut P. Effects of exogenous spermidine (spd) on yield, yield-related parameters and mineral composition of rice (Oryza sativa L. ssp. ‘indica’) grains under salt stress. Australian Journal of?Crop Science, 2013, 7: 1293-1301
[14] Rains D W, Epstein E. Sodium absorption by barley roots: Role of the dual mechanisms of alkali cation transport. Plant Physiology, 1967, 42: 314-318
[15] Riedelsberger J, Miller J K, Valdebenito-Maturana B, Pi?eros M A, González W, Dreyer I. Plant HKT channels: an updated view on structure, function and gene regulation. International Journal of Molecular Sciences, 2021, 22(4): 1892
[16] Horie T, Costa A, Kim T H, Han M J, Horie R, Leung H Y, Miyao A, Hirochika H, An G, Schroeder J I. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO Journal, 2007, 26(12): 3003-3014
[17] Yao X, Horie T, Xue S, Leung H Y, Katsuhara M, Brodsky D E, Wu Y, Schroeder J I. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiology, 2010, 152(1): 341-355.
[18] Garciadeblas B, Senn M E, Banuelos M A, Rodriguez-Navarro A. Sodium transport and HKT transporters: the rice model. Plant Journal, 2003, 34: 788-801
[19] Demidchik V, Tester M. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiology, 2002, 128: 379-387
[20] Demidchik V, Maathuis F. Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development. New Phytologist, 2007, 175: 387-404
[21] Amtmann A, Laurie S, Leigh R, Sanders D. Multiple inward channels provide flexibility in Na+/K+ discrimination at the plasma membrane of barley suspension culture cells. Journal of Experimental Botany, 1997, 48: 481-497
[22] Roberts S K, Tester M. A patch clamp study of Na+ transport in maize roots. Journal of Experimental Botany, 1997, 48: 431-440
[23] Davenport. A weakly voltage-dependent nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiology, 2000, 122: 823-834
[24] Essah P A, Davenport R, Tester M. Sodium influx and accumulation in Arabidopsis. Plant Physiology, 2003, 133(1): 307-318
[25] Isayenkov S V, Maathuis F J M. Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science, 2019, 10:80
[26] Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37: 1141-1146
[27] Kobayashi N I, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujii-Kashino M, Horiuchi T, Nayef M A, Shabala S, An G, Ma J F, Horie T. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant Journal, 2017, 91: 657-670
[28] Maathuis. Sodium in plants: perception, signaling, and regulation of sodium fluxes. Journal of Experimental Botany, 2014, 65: 849-858
[29] Zhou G A, Jiang Y, Yang Q, Wang J F, Huang J, Zhang H S. Isolation and characterization of a new Na+/H+ antiporter gene OsNHA1 from rice (Oryza sativa L.). DNA Sequence, 2006, 17(1): 24-30
[30] Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J K, Pardo J M, Quintero F J. Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 2007, 143(2): 1001-1012
[31] El Mahi H, Pérez-Hormaeche J, De Luca A, Villalta I, Espartero J, Gámez-Arjona F, Fernández J L, Bundó M, Mendoza I, Mieulet D, Lalanne E, Lee S Y, Yun D J, Guiderdoni E, Aguilar M, Leidi E O, Pardo J M, Quintero F J. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiology, 2019, 180(2): 1046-1065
[32] Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochimica et Biophysica Acta - Gene Structure and Expression, 1999, 1446(1-2): 149-55
[33] Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant & Cell Physiology, 2004, 45(2): 146-159
[34] Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta, 2011, 233(1): 175-188
[35] Campbell M T, Bandillo N, Al Shiblawi F R A, Sharma S, Liu K, Du Q, Schmitz A J, Zhang C, Véry A A, Lorenz A J, Walia H. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content. PLoS Genetecs, 2017, 13(6): e1006823
[36] Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W. The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiology, 2015, 168(3): 1076-1090
[37] Suzuki K, Yamaji N, Costa A, Okuma E, Kobayashi N I, Kashiwagi T, Katsuhara M, Wang C, Tanoi K, Murata Y, Schroeder J I, Ma J F, Horie T. OsHKT1;4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biology, 2016, 16: 22
[38] Oda Y, Kobayashi N I, Tanoi K, Ma J F, Itou Y, Katsuhara M, Itou T, Horie T. T-DNA tagging-based gain-of-function of OsHKT1;4 reinforces Na exclusion from leaves and stems but triggers Na toxicity in roots of rice under salt stress. International Journal of Molecular Sciences, 2018, 19(1): 235
[39] Oomen R J, Benito B, Sentenac H, Rodríguez-Navarro A, Talón M, Véry A A, Domingo C. HKT2;2/1, a K?-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism. Plant Journal, 2012, 71(5): 750-762
[40] Liu S P, Zheng L Q, Xue Y H, Zhang Q, Wang L, Shuo H X. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. Journal of Plant Biology, 2010, 53: 444-452
[41] Hasthanssombut S, Supaibulwatana K, Mii M, Nakamura I. Genetic manipulation of Japonica rice using the OsBADH1 from Indica rice to improve salinity tolerance. Plant Cell, Tissue and Organ Culture, 2011, 104: 79-89
[42] Tang W, Sun J, Liu J, Liu F, Yan J, Gou X, Lu B R, Liu Y. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Molecular Biology, 2014, 86(4-5): 443-54
[43] Ge L F, Chao D Y, Shi M, Zhu M Z, Gao J P, Lin H X. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta, 2008, 228(1): 191-201
[44] Li H W, Zang B S, Deng X W, Wang X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234(5): 1007-1018
[45] Vishal B, Krishnamurthy P, Ramamoorthy R, Kumar P P. OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. New Phytologist, 2019, 221(3): 1369-1386
[46] Liu C, Fukumoto T, Matsumoto T, Gena P, Frascaria D, Kaneko T, Katsuhara M, Zhong S, Sun X, Zhu Y, Iwasaki I, Ding X, Calamita G, Kitagawa Y. Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. Plant Physiology and Biochemistry, 2013, 63: 151-158
[47] Kibria M G, Hossain M, Murata Y, Hoque M A. Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Science, 2017, 24(3): 155-162
[48] Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science, 1999, 148(2): 131-138
[49] Guan Q, Liao X, He M, Li X, Wang Z, Ma H, Yu S, Liu S. (2017) Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress. PLoS One, 12(10): e0186052
[50] Yamane K, Mitsuya S, Taniguchi M, Miyake H. Transcription profiles of genes encoding catalase and ascorbate peroxidase in the rice leaf tissues under salinity. Plant Production Science, 2010, 13(2): 164-168
[51] Zhou Y B, Liu C, Tang D Y, Yan L, Wang D, Yang Y Z, Gui J S, Zhao X Y, Li L G, Tang X D, Yu F, Li J L, Liu L L, Zhu Y H, Lin J Z, Liu X M. The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. Plant Cell, 2018, 30(5): 1100-1118
[52] Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One, 2013, 8(2): e57472
[53] Ning X, Sun Y, Wang C, Zhang W, Sun M, Hu H, Liu J, Yang L. A rice CPYC-type glutaredoxin OsGRX20 in protection against bacterial blight, methyl viologen and salt stresses. Frontiers in Plant Science, 2018, 9: 111
[54] Song Y, Miao Y, Song C P. Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytologist, 2014, 201(4): 1121-1140
[55] Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development, 2009, 23(15): 1805-1817
[56] Cui L G, Shan J X, Shi M, Gao J P, Lin H X. DCA1 acts as a transcriptional co-activator of DST and contributes to drought and salt tolerance in rice. PLoS Genetics, 2015, 11(10): e1005617
[57] Fernando L H. The performance of salt resistant paddy, Pokkali in Ceylon. Tropical Agriculturist, 1949, 105: 124-126
[58] Kapp L C. The effect of common salt on rice production. Arkansas Agricultural Experiment Station Bulletin, 1947, pp: 465
[59] Shendge P Y, Chavan V M, Deshpande J D. Breeding of saline resistant varieties in Bombay state. Rice News Letter, 1959, 8(2,3):18-19
[60] Abdul Samad A, Shanmugasundaran A, Rajagopalam K. Breeding rice varieties for saline and alkaline areas in Madras state. Rice News Teller, 1960, 8 (3): 10-12
[61] Kaddah M T, Fakhry S I. Tolerance of Egyptian rice to salt. 1. Salinity effects when applied continuously and intermittently at different stages of growth after transplanting. Soil Science, 1961, 91(2): 113-120
[62] Akbar M, Yabuno T, Nakao S. Breeding for saline resistant varieties of rice. I. Variability for salt tolerance among rice varieties. Japanese Journal of Breeding, 1972, 22(5): 277-284
[63] Akbar M, Yabuno T. Breeding for saline-resistant varieties of rice. II. Comparative performance of some rice varieties to salinity during early development stages. Japanese Journal of Breeding, 1974, 24(4): 176-181
[64] Akbar M, Yabuno T. Breeding for saline-resistant varieties of rice. III. Response of F1 hybrids to salinity in reciprocal crosses between Jhona 349 and Magnolia. Japanese Journal of Breeding, 25(4): 215-220
[65] Fageria N K. Salt tolerance of rice cultivars. Plant Soil, 1985, 88: 237-243
[66] Moeljopawiro S, Ikehashi H. Inheritance of salt tolerance in rice. Euphytica, 1981, 30: 291-300
[67] 周汝伦, 侯家龙, 方宗熙, 王明珍, 宋景芝, 刘惠令. 耐盐水稻品种选育初报. 中国农业科学, 1983, 16(05): 7-13
Zhou R L, Hou J L, Fang Z X, Wang M Z, Song J Z, Liu H L. First report on breeding of salt-tolerant rice plants. Scientia Agricultura Sinica, 1983, 16(05): 7-13
[68] 吴荣生, 王志霞, 蒋荷, 王根来, 顾平, 陈炳泉. 太湖流域稻种资源耐盐性筛选鉴定. 江苏农业科学, 1989(1): 8-9
Wu R S, Wang Z X, Jiang H, Wang G L, Gu P, Chen B Q. Screening and assessment of salt tolerance in rice germplasms from Tai Lake basin. Jiangsu Agricultural Sciences, 1989(1): 8-9
[69] 沈家驹. 抗盐高产水稻新品种辽盐2号. 中国种业, 1991, (4): 47-48
Sheng J J. New salt-resistant, high-yield rice variety Liaoyan No.2. China Seed Industry, 1991, (4): 47-48
[70] Chen R, Cheng Y, Han S, Van Handel B, Dong L, Li X, Xie X. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar-sea rice 86. BMC Genomics, 2017, 18(1): 655
[71] 祝一文, 赵方贵, 成云峰, 雷传松, 刘新. ‘海稻86’耐盐碱胁迫生理机制的初步研究. 青岛农业大学学报: 自然科学版, 2018, 35(1): 32-39
Zhu Y W, Zhao F G, Cheng Y F, Lei C S, Liu X. The preliminary study on alkali-salt tolerance of ‘Sea Rice 86’ and physiological mechanisms. Journal of Qingdao Agricultural University (Natural Science), 2018, 35(1): 32-39
[72] Wu F, Yang J, Yu D, Xu P. Identification and validation a major QTL from “Sea Rice 86” seedlings conferred salt tolerance. Agronomy, 2020, 10(3): 410
[73] 胡时开, 陶红剑, 钱前, 郭龙彪. 水稻耐盐性的遗传和分子育种的研究进展 分子植物育种, 2010, 8(4): 629-640
Hu S K, Tao H J, Qian Q, Guo L B. Progresses on genetics and molecular breeding for salt-tolerance in rice. Molecular Plant Breeding, 2010, 8(4): 629-640
[74] 孙明法, 严国红, 王爱民, 朱国永, 唐红生, 何冲霄, 任仲玲, 刘凯, 张桂云, 施伟, 赵绍路, 孙一标, 朱静雯, 宛柏杰, 姚立生. 水稻耐盐育种研究进展. 大麦与谷类科学, 2017, 34(4): 1-9
Sun M F, Yan G H, Wang A M, Zhu G Y, Tang H S, He C X, Ren Z L, Liu K, Zhang G Y, Shi W, Zhao S L, Sun Y B, Zhu J W, Wan B J, Yao L S. Research progress on the breeding of salt-tolerant rice varieties. Barley and Cereal Sciences, 2017, 34(4): 1-9
[75] 王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议. 中国稻米, 2019, 25(1): 1-6
Wang C L, Zhang Y D, Zhao L, Lu K, Zhu Z, Chen T, Zhao Q Y, Yao S, Zhou L H, Zhao C F, Liang W H, Sun M F, Yan G H. Research status, problems and suggestions on salt-alkali tolerant rice. China Rice, 2019, 25(1): 1-6
[76] Ganie S A, Molla K A, Henry R J, Bhat K V, Mondal T K. Advances in understanding salt tolerance in rice. Theoretical and Applied Genetics, 2019, 132(4): 851-870
[77] Chen T, Shabala S, Niu Y, Chen Z-H, Shabala L, Meinke H, Venkataraman G, Pareek A, Xu J, Zhou M. Molecular mechanisms of salinity tolerance in rice. The Crop Journal, 2021, 9(3): 506-520
[78] Wu M, Liu H, Lin Y, Chen J, Fu Y, Luo J, Zhang Z, Liang K, Chen S, Wang F. In-frame and frame-shift editing of the Ehd1 gene to develop Japonica rice with prolonged basic vegetative growth periods. Frontiers in Plant Science, 2020, 11: 307
[79] 任俊, 曹跃炫, 黄勇, 董慧荣, 刘庆, 王克剑. 基因编辑技术及其水稻中的发展和应用. 中国稻米, 2021, 27(4): 92-100
Ren J, Cao Y X, Huang Y, Dong H R, Liu Q, Wang K J. Development and application of genome editing technology in rice. China Rice, 2021, 27(4): 92-100
[80] Koh S, Lee S C, Kim M K, Koh J H, Lee S, An G, Choe S, Kim S R. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology, 2007, 65(4): 453-66
[81] Zhang D, Wang Y, Shen J, Yin J, Li D, Gao Y, Xu W, Liang J. OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. Rice, 2018, 11(1): 45
[82] Na Y J, Choi H K, Park M Y, Choi S W, Xuan Vo K T, Jeon J S, Kim S Y. OsMAPKKK63 is involved in salt stress response and seed dormancy control. Plant Signal & Behavior, 2019, 14(3): e1578633
[83] Nan N, Wang J, Shi Y, Qian Y, Jiang L, Huang S, Liu Y, Wu Y, Liu B, Xu Z Y. Rice plastidial NAD-dependent malate dehydrogenase 1 negatively regulates salt stress response by reducing the vitamin B6 content. Plant Biotechnology Journal, 2020, 18(1): 172-184
[84] Zou M, Guan Y, Ren H, Zhang F, Chen F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Molecular Biology, 2008, 66(6): 675-683
[85] Li C H, Wang G, Zhao J L, Zhang L Q, Ai L F, Han Y F, Sun D Y, Zhang S W, Sun Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell, 2014, 26(6): 2538-2553
[86] Wang J, Qin H, Zhou S, Wei P, Zhang H, Zhou Y, Miao Y, Huang R. The ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice. Plant Cell, 2020, 32(2): 414-428
[87] Yang C, Ma B, He S J, Xiong Q, Duan K X, Yin C C, Chen H, Lu X, Chen S Y, Zhang J S. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology, 2015, 169(1): 148-165
[88] Cheng X, Zhang S, Tao W, Zhang X, Liu J, Sun J, Zhang H, Pu L, Huang R, Chen T. INDETERMINATE SPIKELET1 recruits histone deacetylase and a transcriptional repression complex to regulate rice salt tolerance. Plant Physiology, 2018, 178(2): 824-837
[89] Jing P, Kong D, Ji L, Kong L, Wang Y, Peng L, Xie G. OsClo5 functions as a transcriptional co-repressor by interacting with OsDi19-5 to negatively affect salt stress tolerance in rice seedlings. Plant Journal, 2021, 105(3): 800-815
[90] Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer A H, Schluepmann H, Liu C M, Ouwerkerk P B. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Molecular Biology, 2012, 80(6): 571-585
[91] Zhang L, Tian L H, Zhao J F, Song Y, Zhang C J, Guo Y. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiology, 2009, 149(2): 916-928
[92] Jiang M, Liu Y, Li R, Li S, Tan Y, Huang J, Shu Q. An inositol 1,3,4,5,6-pentakisphosphate 2-kinase 1 mutant with a 33-nt deletion showed enhanced tolerance to salt and drought stress in rice. Plants (Basel), 2020, 10(1): 23
[93] Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signaling and salt stress tolerance but similar roles in drought and cold tolerance in rice. Journal of Experimental Botany, 2011, 62(14): 4863-4874
[94] Yang M, Sun F, Wang S, Qi W, Wang Q, Dong X, Yang J, Luo X. Down-regulation of OsPDCD5, a homolog of the mammalian PDCD5, increases rice tolerance to salt stress. Molecular Breeding, 2013, 31: 333-3346
[95] Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A, Yaegashi H, Obara T, Oikawa K, Utsushi H, Kanzaki E, Mitsuoka C, Natsume S, Kosugi S, Kanzaki H, Matsumura H, Urasaki N, Kamoun S, Terauchi R. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology, 2015, 33(5): 445-449
[96] Lan T, Zheng Y, Su Z, Yu S, Song H, Zheng X, Lin G, Wu W. OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa?L.). G3 (Bethesda), 2019, 9(12): 4107-4114
[97] Rao X L, Zhang X H, Li R J, Shi H T, Lu Y T. A calcium sensor-interacting protein kinase negatively regulates salt stress tolerance in rice (Oryza sativa). Functional Plant Biology, 2011, 38(6): 441-450
[98] Xiang J, Ran J, Zou J, Zhou X, Liu A, Zhang X, Peng Y, Tang N, Luo G, Chen X. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Reports, 2013, 32(11): 1795-1806
[99] Alfatih A, Wu J, Jan S U, Zhang Z S, Xia J Q, Xiang C B. Loss of rice PARAQUAT?TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant, Cell & Environment, 2020, 43(11): 2743-2754
[100] Santosh Kumar V V, Verma R K, Yadav S K, Yadav P, Watts A, Rao M V, Chinnusamy V. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants, 2020, 26(6): 1099-1110
[101] 莫天宇, 徐善斌, 邹德堂, 王敬国, 刘化龙, 孙健, 贾琰, 赵宏伟, 郑洪亮. 利用CRISPR/Cas9技术敲除OsEIL1和OsEIL2基因改良水稻耐盐性. 华北农学报, 2021, 36(1): 71-80
Mo T Y, Xu S B, Zou D T, Wang J G, Liu H L, Sun J, Jia Y, Zhao H W, Zheng H L. Enhancing salt tolerance of rice by knocking out OsEIL1 and OsEIL2 via CRISPR/Cas9 system. Acta Agriculturae Boreali-Sinica, 2021, 36(1): 71-80
[102] Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J, Yu X, Liu G, Luo L. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 2019, 39: 47
[103] 刘凯, 朱静雯, 宛柏杰, 代金英, 唐红生, 孙明法. 水稻耐盐性分子遗传研究进展. 植物遗传资源学报, 2021, 22(4): 881-889
Liu K, Zhu J W, Wan B J, Dai J Y, Tang H S, Sun M F. Research progress on molecular genetics of rice salt tolerance. Journal of Plant Genetics Resources, 2021, 22(4): 881-889
[104] Shailani A, Joshi R, Singla-Pareek S L, Pareek A. Stacking for future: pyramiding genes to improve drought and salinity tolerance in rice. Physiologia Plantarum, 2021, 172(2): 1352-1362
PDF(1304 KB)

文章所在专题

资源与环境

Accesses

Citation

Detail

段落导航
相关文章

/