玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析

夏玉生,郭成,温胜慧,孙素丽,朱振东,段灿星

植物遗传资源学报. 2022, 23(1): 61-71

PDF(14087 KB)
PDF(14087 KB)
植物遗传资源学报 ›› 2022, Vol. 23 ›› Issue (1) : 61-71. DOI: 10.13430/j.cnki.jpgr.20210727001
论文

玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析

  • 夏玉生1, 郭成2, 温胜慧3, 孙素丽1, 朱振东1, 段灿星1
作者信息 +

Identification of Maize Germplasm Resistant to Fusarium Ear Rot and Gibberella Ear Rot and Genetic Diversity Analysis of Resistant Lines

  • XIA Yu-sheng1, GUO Cheng2, WEN Sheng-hui3, SUN Su-li1, ZHU Zhen-dong1, DUAN Can-xing1
Author information +
History +

摘要

穗腐病是玉米生产上最重要的病害之一,严重影响其产量和品质,威胁人畜健康。选育和利用优良的抗穗腐病品种,是防治玉米穗腐病最为经济有效的措施。利用花丝通道注射法,在北京昌平和海南三亚两个试验点,对国内外346份玉米自交系进行了抗拟轮枝镰孢与禾谷镰孢穗腐病的鉴定与评价。综合分析2个点的抗性鉴定数据表明,对拟轮枝镰孢穗腐病表现高抗、抗病、中抗、感病和高感的材料分别为1、43、106、147和49份,占总鉴定材料的0.3%、12.4%、30.6%、42.5%和14.2%;对禾谷镰孢穗腐病表现高抗、抗病、中抗、感病和高感的材料分别为10、32、55、79和170份,占比分别为2.9%、9.3%、15.9%、22.8%和49.1%。对两种镰孢穗腐病同时表现中抗以上水平的种质共41份,其中1份(15-TL-1224)高抗2种穗腐病、2份(T351-1、18-QTL-25)对禾谷镰孢和拟轮枝镰孢穗腐病表现高抗和抗病,3份同时表现抗病,是难得的抗穗腐病资源。对上述41份抗病种质和144份感病材料进行的2种穗腐病抗性相关性分析表明,41份抗病种质对2种穗腐病的抗性相关系数为0.24,144份感病材料对2种穗腐病抗性的相关性系数为-0.16。40对多态性SSR引物在41份抗性材料中扩增出183个等位基因,多态性位点百分率(PPB)为100.00%,平均等位基因数(Na)和有效等位基因数(Ne)分别为3.7556、7.6923个,平均Nei′s基因多样性(H)、Shannon′s信息指数(I)分别为0.6596、1.4458,平均多态信息含量(PIC)为0.326,变幅为0.0513~1.0000之间。通过UPGMA聚类分析,41份抗病材料被划分为7个亚群,分别是PB亚群、Lan亚群、未知亚群、PA亚群、LRC亚群、BSSS亚群和TSPT亚群,表现出较高的遗传多样性,其中PA亚群包含的抗病种质最多。研究结果将为玉米穗腐病抗病育种中抗源的选择和利用提供参考。

Abstract

Ear rot is one of the most devastating diseases in maize production in China, which seriously affects the yield and quality of maize and threatens the health of humans and animals. Breeding and using excellent ear rot resistant varieties is the most economical and effective measure to prevent and control maize ear rot. Using silk channel inoculation, 346 maize inbred lines at home and abroad were identified and evaluated for resistance to Fusarium ear rot (FER) and Gibberella ear rot (GER) (caused by Fusarium verticillioides and F. graminearum, respectively) at two sites in Changping, Beijing and Sanya, Hainan. A comprehensive analysis of the data from the two sites showed that there were 1, 43, 106, 147 and 49 accessions exhibiting high resistance (HR), resistance (R), moderate resistance (MR), susceptibility (S), and high susceptibility (HS) to FER, accounting for 0.3%, 12.4%, 30.6%, 42.5%, and 14.2% of the total 346 materials, respectively, and there were 10, 32, 55, 79, and 170 accessions exhibiting HR, R, MR, S, and HS to GER, accounting for 2.9%, 9.3%, 15.9%, 22.8%, and 49.1% of the total 346 materials, respectively. Forty-one maize inbred lines exhibited HR, R, or MR to both FER and GER. Among them, line 15-TL-1224 exhibited HR to both FER and GER, lines T351-1 and 18-QTL-25 exhibited HR to GER and R to FER, and 3 lines exhibited R to both FER and GER, which were all precious resources resistant to ear rot. The correlation analysis of FER and GER resistance among the above 41 resistant accessions and 144 susceptible germplasms was conducted. The correlation coefficient between FER and GER resistance among the 41 resistant accessions was 0.24, while that among the 144 susceptible germplasms was -0.16. Using 40 pairs of polymorphic SSR primers, 183 alleles (Na) were amplified in the 41 resistant lines, with polymorphic site percentage (PPB) of 100.00%. The average number of alleles (Na), effective allele number (Ne), Nei's gene diversity (H), and Shannon's information index (I) were 3.7556, 7.6923, 0.6596, and 1.4458, respectively. The average polymorphic information content (PIC) was 0.326, varying from 0.0513 to 1.0000 for each marker. Using UPGMA cluster analysis, the 41 resistant accessions were divided into 7 subgroups, namely PB, Lan, unknown, PA, LRC, BSSS, and TSPT, which exhibited high genetic diversity among the 41 inbred lines. The PA subgroup contained the most numerous resistant germplasms. The results would provide guidance and reference for the selection and utilization of resistance sources in breeding.

关键词

玉米种质;拟轮枝镰孢穗腐病;禾谷镰孢穗腐病;抗性鉴定;遗传多样性

Key words

maize germplasm / Fusarium ear rot / Gibberella ear rot / resistance identification / genetic diversity

引用本文

导出引用
夏玉生,郭成,温胜慧,孙素丽,朱振东,段灿星. 玉米种质抗拟轮枝镰孢与禾谷镰孢穗腐病鉴定及抗性多样性分析. 植物遗传资源学报. 2022, 23(1): 61-71 https://doi.org/10.13430/j.cnki.jpgr.20210727001
XIA Yu-sheng,GUO Cheng,WEN Sheng-hui,SUN Su-li,ZHU Zhen-dong and DUAN Can-xing. Identification of Maize Germplasm Resistant to Fusarium Ear Rot and Gibberella Ear Rot and Genetic Diversity Analysis of Resistant Lines. Journal of Plant Genetic Resources. 2022, 23(1): 61-71 https://doi.org/10.13430/j.cnki.jpgr.20210727001

参考文献

[1]国家统计局, 国家统计关于2020年粮食产量数据公告
[2]段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48(11): 2152-2164.Duan C X, Wang X M, Song F J, Sun S L, Zhou D N, Zhu Z D.Research progress of maize resistance to ear rot. Scientia Agricultura Sinica, 2015, 48(11): 2152-2164
[3]段灿星, 王晓鸣, 武小菲, 杨知还, 宋凤景, 赵立萍, 孙素丽, 朱振东. 玉米种质和新品种对腐霉茎腐病和镰孢穗腐病的抗性分析. 植物遗传资源学报, 2015, 16(5): 947-954.Duan C X, Wang X M, Wu X F, Yang Z H, Song F J, Zhao L P, Sun S L, Zhu Z D. Resistance analysis of maize germplasm and new varieties to pythium stalk rot and Fusarium ear rot. Journal of Plant Genetic Resources, 2015, 16(5): 947-954.
[4]Duan C X, Qin Z H, Yang Z H, Li W X, Sun S L, Zhu Z D, Wang X M. Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins, 2016, 8: 186.
[5]Zhou D N, Wang X M, Chen G K, Sun S L, Yang Y, Zhu Z D, Duan C X. The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 2018, 10: 90.
[6]杜青, 唐照磊, 李石初, 上官玲玲, 李华娇, 段灿星. 广西玉米穗腐病致病镰孢种群构成与毒素化学型分析. 中国农业科学, 2019, 52: 1895-1907.Du Q, Tang Z L, Li S C, Shang G L L, Li H J, Duan C X. Composition of Fusarium species causing maize ear rot and analysis of toxigenic chemotype in Guangxi. Scientia Agricultura Sinica, 2019, 52: 1895-1907
[7]王宝宝,郭成,孙素丽,夏玉生,朱振东,段灿星. 玉米穗腐病致病禾谷镰孢复合种的遗传多样性、致病力与产毒型分析. 中国农业科学, 2020, 53(23): 4777-4790Wang B B, Guo C, Sun S L, Xia Y S, Zhu Z D, Duan C X. Analysis of genetic diversity, pathogenicity and toxigenic types of maize ear rot pathogenic Fusarium graminearum complex species. Scientia Agricultura Sinica, 2020, 53 (23): 4777-4790
[8]王宝宝, 毕四刚, 肖明纲, 张冬英, 闫强, 张彦彦, 杨树龙, 朱振东, 段灿星. 黑龙江省玉米穗腐病致病镰孢菌分离鉴定及产毒基因型分析. 草业学报, 2020, 29(1): 163-174Wang B B, Bi S G, Xiao M G, Zhang D Y, Yan Q, Zhang Y Y, Yang S L, Zhu Z D, Duan C X. Isolation and identification of the pathogenic Fusarium of maize ear rot in Heilongjiang Province and analysis of its toxin-producing genotypes. Acta Prataculturae Sinica, 2020, 29 (1): 163-174
[9]Eller M S, Holland J B, Payne G A. Breeding for improved resistance to fumonisin contamination in maize. Toxin Reviews, 2008, 27(3-4):371-389
[10]马秉元, 李亚玲, 龙书生, 李多川. 玉米穗粒腐病接种技术及品种抗病性鉴定.植物保护学报, 1999(2): 121-124.Ma B Y, Li Y L, Long S S, Li D C. Inoculation technique of maize ear rot and identification of disease resistance of varieties. Journal of Plant Protection, 1999(2): 121-124.
[11]李洪连, 张新, 袁红霞, 李健强. 玉米杂交种穗粒腐病原鉴定. 植物保护学报, 1999(4): 305-308.Li H L, Zhang X, Yuan H X, Li J Q. Identification of the pathogen of maize hybrid ear and kernel rot. Journal of Plant Protection, 1999(4): 305-308.
[12]曲晓丽, 徐秀德, 董怀玉, 王丽娟, 姜钰, 宋艳春, 盖淑军. 玉米子粒携带真菌种群多样性分析.玉米科学,2009,17(6):115-117.Qu X L, Xu X D, Dong H Y, Wang L J, Jiang Y, Song Y C, Gai S J. Analysis on the population diversity of fungi carried by mazie kernels. Journal Of Maize Science, 2009, 17(6): 115-117.
[13]任旭, 朱振东, 李洪杰, 段灿星, 王晓鸣. 轮枝镰孢SSR标记开发及在玉米分离群体遗传多样性分析中的应用. 中国农业科学, 2012, 45(1): 52-66.Ren X, Zhu Z D, Li H J, Duan C X, Wang X M. Development of SSR markers for Fusarium verticillium and its application in analysis of genetic diversity of maize segregating populations. Scientia Agricultura Sinica, 2012, 45(1): 52-66.
[14]卢维宏, 黄思良, 陶爱丽, 武爱波, 王春梅, 黎起秦. 玉米穗腐病样品中层出镰刀菌的分离与鉴定.植物保护学报, 2011, 38(3): 233-239.Lu W H, Huang S L, Tao A L, Wu A B, Wang C M, Li Q Q. Isolation and identification of Fusarium strata in maize ear rot samples. Journal of Plant Protection, 2011, 38(3): 233-239
[15]李新凤, 王建明, 张作刚, 高俊明, 郝晓娟, 贺运春. 山西省玉米穗腐病病原镰孢菌的分离与鉴定.山西农业大学学报, 2012, 32(3): 218-223.Li X F, Wang J M, Zhang Z G, Gao J M, Hao X J, He Y C . Isolation and identification of the pathogen Fusarium of maize ear rot in Shanxi Province Journal of Shanxi Agricultural University, 2012, 32(3): 218-223
[16]郭成,魏宏玉, 郭满库, 何苏琴, 金社林, 陈红梅, 王晓鸣, 郭建国. 甘肃玉米穗腐病样品中轮枝镰孢菌的分离鉴定及生物学特性.植物病理学报, 2014, 44(1): 17-25.Guo C, Wei H Y, Guo M K, He S Q, Jin S L, Chen H M, Wang X M, Guo J G. Isolation, identification and biological characteristics of Fusarium verticillium from maize ear rot samples in Gansu. Acta Phytopathologica Sinica, 2014, 44(1): 17-25
[17]张小飞, 邹成佳, 崔丽娜, 李晓, 杨晓蓉, 罗怀海. 西南地区玉米穗腐病病原分离鉴定及接种方法研究. 西南农业学报, 2012, 25(6): 2078-2082.Zhang X F, Zou C J, Cui L N, Li X, Yang X R, Luo H H. Isolation and identification of the pathogen of maize ear rot and inoculation methods in southwestern China. Journal of Southwest Agricultural Sciences, 2012, 25(6): 2078-2082
[18]苏爱国, 王帅帅, 段赛茹, 张如养, 邢锦丰, 杨扬, 宋伟, 赵久然. 玉米抗禾谷镰孢菌穗粒腐病种质资源鉴定. 植物遗传资源学报, https://doi.org/10.13430/j.cnki.jpgr.20210201004.Su A G, Wang S S, Duan S R, Zhang R Y, Xing J F, Yang Y, Song W, Zhao J R. Identification of maize germplasm resourcesresistant to Fusarium graminearum ear and kernel rot. Journal of Plant Genetic Resources, https://doi.org/10.13430/j.cnki.jpgr.20210201004
[19]Reid L. M. Resistance of maize hybrids and inbreds following silk inoculation with three isolates of Fusarium graminearum. Plant Disease, 1993, 77(12):1248-1248
[20]Schaafsma A W, Nicol R W, Reid L M. Evaluating commercial maize hybrids for resistance to Gibberella ear rot. European Journal of Plant Pathology, 1997, 103:737-746
[21]杨俊伟, 王建军, 赵变平, 李彦良, 贾鑫, 王富荣. 玉米新品种抗禾谷镰孢菌穗腐病鉴定与评价.河北农业科学,2020,24(4):47-49.Yang J W, Wang J J, Zhao B P, Li Y N, Jia X, Wang F R. Identification and evaluation of resistance to Fusarium graminearum ear rot in new maize varieties. Hebei Agricultural Sciences, 2020, 24(4): 47-49
[22]徐婧,姜钰,秦培文,刘可杰,胡兰,孙会杰,徐秀德. 外引玉米种质对两种穗腐病原镰孢菌抗性鉴定. 植物遗传资源学报,2019,20(1):20-25Xu J, Jiang Y, Qin P W, Liu K J, Hu L, Sun H J, Xu X D. Identification of the resistance of imported maize germplasm to two kinds of ear rot pathogen Fusarium. Journal of Plant Genetic Resources, 2019, 20(1): 20-25
[23]杨洋, 郭成, 孙素丽, 陈国康, 朱振东, 王晓鸣, 段灿星. 玉米抗腐霉茎腐病种质标记基因型鉴定与遗传多样性分析. 植物遗传资源学报, 2019, 20(6): 1418-1427.Yang Y, Guo C, Sun S L, Chen G K, Zhu Z D, Duan C X. Genotype identification and genetic diversity analysis of maize germplasm markers resistant to Pythium stalk rot. Journal of Plant Genetic Resources, 2019, 20(6): 1418-1427
[24]胡德分, 陆璐, 任春琼, 李阳, 胡晓莉, 赵自仙, 王正启, 杨久. 云南常用玉米自交系SSR遗传多样性研究.云南农业大学学报(自然科学), 2016,31(6): 975-981.Hu D F, Lu L, Ren C Q, Li Y, Hu X L, Zhao Z X, Wang Z Q, Yang J. SSR genetic diversity of commonly used maize inbred lines in Yunnan. Journal of Yunnan Agricultural University (Natural Sciences), 2016, 31(6 ): 975-981.
[25]赵文明, 王森, 陈艳萍, 张美景, 袁建华. 基于60个核心SSR标记的糯玉米自交系遗传多样性分析. 江西农业学报, 2018, 30(12): 1-8.Zhao W M, Wang S, Chen Y P, Zhang M J, Yuan J H. Analysis of genetic diversity of waxy maize inbred lines based on 60 core SSR markers. Jiangxi Journal of Agriculture, 2018, 30(12): 1-8.
[26]李锐, 白建荣, 王秀红, 张丛卓, 张效梅, 闫蕾, 杨瑞娟. 144份甜玉米群体的遗传多样性分析. 作物杂志, 2018(2): 17-24.Li R, Bai J R, Wang X H, Zhang C Z, Zhang X M, Yan L, Yang R J. Genetic diversity analysis of 144 sweet maize populations. Crops, 2018, 34(2): 17-24.
[27]金柳艳, 李明顺, 王志伟, 石洁, 郭宁, 刘树森, 张海剑. 美国玉米自交系对4种病原茎腐病的抗性鉴定及遗传多样性分析.植物遗传资源学报, 2019, 20(6): 1428-1437.Jin L Y, Li M S, Wang Z W, Shi J, Guo N, Liu S S, Zhang H J. Resistance identification and genetic diversity analysis of U.S. maize inbred lines to four pathogenic stalk rot. Journal of Plant Genetic Resources, 2019, 20(6): 1428-1437.
[28]陈文娟, 李万昌, 杨知还, 孙素丽, 王晓鸣, 朱振东, 段灿星. 玉米抗南方锈病种质资源初步鉴定及遗传多样性分析. 植物遗传资源学报, 2018, 19(2): 225-231, 242.Chen W J, Li W C, Yang Z H, Sun S L, Wang X M, Zhu Z D, Duan C X. Preliminary identification and genetic diversity analysis of maize germplasm resources resistant to southern rust. Journal of Plant Genetic Resources, 2018, 19(2): 225-231, 242
[29]Walker R D, White D G. Inheritance of resistance to Aspergillus ear rot and aflatoxin production of maize from CI2. Plant Disease,2001, 85: 322-327
[30]Atlin G N, Enerson P M, Mcgirr L G, Hunter R B. Gibberella ear rot development and zearalenone and vomitoxin production as affected by maize genotype and Gibberella zeae strain. Canadian Journal of Plant Science, 1983, 63(4): 847-853.
[31]李新凤, 王雪梅, 尉天春, 姜晓东, 杨俊伟, 冯铸, 王建明. 山西玉米丝黑穗病菌SSR遗传多样性与群体结构分析. 植物病理学报, https://doi.org/10.13926/j.cnki.apps.000749.Li X F, Wang X M, Wei T C, Jiang X D, Yang J W, Feng Z, Wang J M. SSR genetic diversity and population structure analysis of Shanxi maize head smut. Acta Phytopathologica Sinica, https://doi.org/10.13926/j.cnki.apps.000749.
[32]乔治军, 刘龙龙, 南晓洁, 赵秀娟, 王海岗. 180份玉米自交系亲缘关系的分子评价. 植物遗传资源学报, 2011, 12(2): 211-215+222.Qiao Z J, Liu L L, Nan X J, Zhao X J, Wang H G. Molecular evaluation of the genetic relationship of 180 maize inbred lines. Journal of Plant Genetic Resources, 2011, 12(2): 211-215+222.
[33]李齐向, 张小中, 涂前程, 雷富贵, 纪平, 陈由禹. 基于SSR分子标记的青贮玉米自交系遗传多样性分析. 福建农业学报, 2013, 28: 320–323.Li Q X, Zhang X Z, Tu Q C, Lei F G, Ji Ping, Chen Y Y. Genetic diversity analysis of silage maize inbred lines based on SSR molecular markers. Fujian Journal of Agricultural Sciences, 2013, 28: 320–323.
[34] 段灿星, 江凯, 秦子惠, 孙素丽, 宋凤景, 王晓鸣. 玉米抗南方锈病种质标记基因型鉴定与遗传多样性分析. 植物保护学报, 2015, 42(6): 899-907.Duan C X, Jiang K, Qin Z H, Sun S L, Song F J, Wang X M. Genotype identification and genetic diversity analysis of maize germplasm markers resistant to southern rust. Journal of Plant Protection, 2015, 42(6): 899-907.
PDF(14087 KB)

Accesses

Citation

Detail

段落导航
相关文章

/