萝卜和白菜属间杂种硫甙基因表达与组分特征分析

王鹏,李晓曼,Holger Budahn,刘同金,宋江萍,王海平,张晓辉,阳文龙,李锡香

植物遗传资源学报. 2020, 21(5): 1279-1286

PDF(20338 KB)
PDF(20338 KB)
植物遗传资源学报 ›› 2020, Vol. 21 ›› Issue (5) : 1279-1286. DOI: 10.13430/j.cnki.jpgr.20200229003
论文

萝卜和白菜属间杂种硫甙基因表达与组分特征分析

  • 王鹏1, 李晓曼1, Holger Budahn2, 刘同金1, 宋江萍1, 王海平1, 张晓辉1, 阳文龙1, 李锡香1
作者信息 +

Gene Expression and Component Changes of Glucosinolates in A Intergeneric Hybrid Between Chinese Cabbage and Radish

  • WANG Peng1, LI Xiao-man1, Holger Budahn2, LIU Tong-jin1, SONG Jiang-ping1, WANG Hai-ping1, ZHANG Xiao-hui1, YANG Wen-long1, LI Xi-xiang1
Author information +
History +

摘要

硫甙是十字花科蔬菜中重要的次生代谢物质。在不同的十字花科作物中,硫甙的种类及其降解产物不同,从而产 生了各自的特殊风味与生物功能。萝卜的主要硫甙 4-甲基亚磺酰基-3-丁烯基硫甙(RAE)及其降解产物具有强力的抗癌活 性;而白菜的主要硫甙 2-羟基-3-丁烯基硫甙(PRO)的降解产物噁唑烷硫酮,被认为有致甲状腺肿大的副作用。本研究采 用高效液相色谱分析法,分析了萝卜(‘36-2’)、白菜(‘Chiifu’)以及属间远缘杂交合成种(DH)中硫甙组分及其含 量,共鉴定出 13 种硫甙。萝卜中的主要硫甙是 4-甲硫基-3-丁烯基硫甙(RSA)和 RAE;白菜中的主要硫甙为 PRO、3-丁烯 基硫甙(NAP)和吲哚-3-甲基硫甙(GBC);远缘杂交合成种的主要硫甙则有 RAE、4-戊烯基硫甙(GBN)、NAP 和 PRO。 通过与‘36-2’的比较转录组分析,发现 DH 中硫甙通路基因有 14 个下调表达和 23 个上调表达,其中萝卜特有基因 RsIQD1.1 和 RsMYB34.2 下调表达,而 RsMYB34.1 上调表达。值得注意的是萝卜中的 RsFMOGS-OX2.1 在 DH 中显著上调表达。通过与 ‘Chiifu’的比较分析,发现 DH 中硫甙通路基因有 24 个下调表达和 15 个上调表达,其中白菜特有基因 BrIPMI-SSU3.1、 BrIPMDH3.1 和 BrMAM3.1 显著上调表达。这些基因在不同物种中的表达特点与其硫甙组分的变化有关。这在一定程度上证 实远缘杂交可能通过改变后代的遗传组成和基因表达而改变其硫甙组成及含量,为以远缘杂种作为桥梁种质实现物种间基因 交流,创制高品质十字花科新种质奠定了理论基础和技术支撑。

Abstract

Glucosinolates are important secondary metabolites in cruciferous vegetables. In various cruciferous crops, glucosinolates and their degradation products may be different, thus rendering their respective special flavors and biological functions. A main glucosinolates in radish, glucoraphenin(RAE) and its degradation product have powerful anticancer activity, whereas oxazolidinone, a degradation product of progoitrin (PRO), a main glucosinolate in Chinese cabbage, is considered to have the side effect of causing goiters. In this study, high performance liquid chromatography (HPLC) was used to analyze the main components and contents of glucosinolates in radish (‘36-2’), Chinese cabbage (‘Chiifu’) and raphanobrassica, a synthetic intergeneric distant hybrid (DH). A total of 13 glucosinolates were identified. The main glucosinolates in radish were glucoraphasatin (RSA) and RAE. The main glucosinolates in Chinese cabbage were PRO, gluconapin (NAP) and glucobrassicin (GBC). The main glucosinolates in the synthetic intergeneric hybrid species were RAE, glucobrassicanapin (GBN), NAP, PRO and GBC. Through the transcriptome analysis comparing DH with ‘36-2’, it was found that there were 14 down-regulated expression and 23 up-regulated expression genes for glucosinolates pathway in DH, among which the radish-specific RsIQD1.1 and RsMYB34.2 were down-regulated, while RsMYB34.1 was up-regulated. Notably, the RsFMOGS-OX2.1 of radish was significantly up-regulated in DH. Through comparative analysis with ‘Chiifu’, it was found that 24 glucosinolates pathway genes in DH were down-regulated and 15 were up-regulated, among which the Chinese-cabbage-specific BrIPMI-SSU3.1, BrIPMDH3.1 and BrMAM3.1 were significantly up-regulated. The expression characteristics of these genes in DH appeared to be related to the change of the composition of glucosinolates. This proved to some extent that distant hybridization may change the component and content of glucosinolates by changing the genetic composition and gene expression of the offspring, which lays a theoretical foundation and technical support for realization of gene exchanges among species by using distant hybrids as a bridge germplasm and creation of new germplasms of high quality in cruciferous crops.

关键词

硫甙;萝卜;白菜;远缘杂种;转录组

Key words

glucosinolates / radish / Chinese cabbage / distant hybrid / transcriptome

引用本文

导出引用
王鹏,李晓曼,Holger Budahn,刘同金,宋江萍,王海平,张晓辉,阳文龙,李锡香. 萝卜和白菜属间杂种硫甙基因表达与组分特征分析. 植物遗传资源学报. 2020, 21(5): 1279-1286 https://doi.org/10.13430/j.cnki.jpgr.20200229003
WANG Peng,LI Xiao-man,Holger Budahn,LIU Tong-jin,SONG Jiang-ping,WANG Hai-ping,ZHANG Xiao-hui,YANG Wen-long and LI Xi-xiang. Gene Expression and Component Changes of Glucosinolates in A Intergeneric Hybrid Between Chinese Cabbage and Radish. Journal of Plant Genetic Resources. 2020, 21(5): 1279-1286 https://doi.org/10.13430/j.cnki.jpgr.20200229003

参考文献

Bla?evi? I, Montaut S, Bur?ul F, Rollin P. Glucosinolates: Novel Sources and Biological Potential[J]. Austin Journal of Bioorganic Organic Chemistry, 2014, 1(1): 4.
Van Doorn H E, Van d K G C, Van Holst G J, Raaijmakers-Ruijs N C, Postma E,Groeneweg B, Jongen W H. The glucosinolates sinigrin and progoitrin are important determinants for taste pReference and bitterness of brussels sprouts. Journal of the Science of Food and Agriculture, 1998, 78(1): 30-38.
Mithen R F, Dekker M, Verkerk R, Rabot S, Johnson I T. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. Journal of the Science of Food and Agriculture, 2000, 80(7): 967-984.
Jander G, Cui J, Nhan B, Ausubel P F M. The tasty locus on chromosome 1 of arabidopsis affects feeding of the insect herbivore trichoplusia ni. Plant Physiology, 2001, 126(2):890-898.
Hansson L E, Nyrén O, Bergstr?m R, Wolk A, Lindgren A, Baron J, Adami H O. Diet and risk of gastric cancer. a population-based case-control study in sweden. International Journal of Cancer, 1993, 55(2):181-189.
Zhao H, Lin J, Grossman H B, Hernandez L M, Dinney C P, Wu X. Dietary isothiocyanates,gstm1, gstt1,nat2 polymorphisms and bladder cancer risk. International Journal of Cancer, 2007, 120(10).
Moy K A, Yuan J M, Chung F L, Wang X L, Van Den Berg D, Wang R, ... Yu M C. Isothiocyanates, glutathiones-transferase m1 and t1 polymorphisms and gastric cancer risk:a prospective study of men in shanghai, china. International Journal of Cancer, 2009, 125(11):2652-2659.
Niels Agerbirk,Carl Erik Olsen. Glucosinolate structures in evolution. Phytochemistry, 2012, 77:16-45.
S?nderby I E, Geu-Flores F, Halkier B A. Biosynthesis of glucosinolates–gene discovery and beyond. Trends in plant science, 2010, 15(5):283-290.
Harper A L, Trick M, Higgins J, Fraser F, Clissold L, Wells R,...Bancroft I. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nature biotechnology, 2012, 30(8):798.
Augustine R,Bisht N C. Biotic elicitors and mechanical damage modulate glucosinolate accumulation by co-ordinated interplay of glucosinolate biosynthesis regulators in polyploid Brassica juncea. Phytochemistry, 2015, 117:43-50.
Halkier B A,Gershenzon J. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 2006, 57(1):303-333.
Radoj?i? Redovnikovi? I,Gliveti? T,Delonga K.,Vorkapi?-Fura? J. Glucosinolates and their potential role in plant. Periodicum biologorum, 2008, 110(4):297-309.
张丽,何洪巨,陈静华,赵学志.不同萝卜品种中硫代葡萄糖苷组分及含量分析.中国蔬菜, 2010, (18):49-52.
Zhang L, He H, Cheng J, Zhao X. Glucosinolate Composition and Content Analysis of Different Radish (Raphanus sativus L.) Varieties. China Vegetables, 2010, (18):49-52.
Ishida M, Nagata M, Ohara T, Kakizaki T, Hatakeyama K, Nishio T. Small variation of glucosinolate composition in japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component. Breeding Science, 2012, 62(1): 63-70.
Yi G, Lim S, Chae W B, Park J E, Huh J H. Root glucosinolate profiles for screening of radish (Raphanus sativus L.) genetic resources. Journal of Agricultural and Food Chemistry, 2015, 64(1), 61.
Maldini M, Foddai M, Natella F, Petretto G L, Rourke J P, Chessa M. Identification and quantification of glucosinolates in different tissues of raphanus raphanistrum by liquid chromatography tandem-mass spectrometry. Journal of Food Composition and Analysis, 2016, S0889157516300758.
Kim J K, Chu S M, Kim S J, Lee D J, Lee S Y, Lim S H, Ha S H, Kweon S J, Cho H S. Variation of glucosinolates in vegetable crops of brassica rapa l. ssp. pekinensis. Food Chemistry, 2010, 119(1):423-428.
Chen X, Zhu Z, Gerendás J, Zimmermann N. Glucosinolates in chinese brassica campestris vegetables: chinese cabbage, purple cai-tai, choysum, pakchoi, and turnip. Hortscience, 2008, 43(2): 571-574.
Lee M K, Chun J H, Byeon DH, Chung S O, Park S U, Park S, Arasu M V, AlDhabi N A, LimY P, Kim S J. Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT-Food Science and Technology, 2014, 58(1): 93-101.
Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X. Glucosinolate biosynthetic genes in Brassica rapa.Gene, 2011, 487(2):135-142.
Zhang X, Yue Z, Mei S, Qiu Y, Yang X, Chen X, Cheng F, Wu Z, Sun Y, Jing Y, Liu B, Shen D, Wang H, Cui N, Duan Y, Wu J, Wang J, Gan C, Wang J, Wang X, Li X. A de novo genome of a Chinese radish cultivar. Horticulture Plant Journal, 2015, 1(3):155-164.
Wang J,Qiu Y, Wang X,Yue Z, Yang X,Chen X, Zhang X, Shen D, Wang H, Song J, He H, Li X. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis. Scientific reports, 2017, 7(1):1-9.
Kakizaki T, Kitashiba H, Zou Z, Li F, Fukino N, Ohara T, Nishio T, Ishida M. A 2-oxoglutarate-dependent dioxygenase mediates the biosynthesis of glucoraphasatin in radish. Plant physiology, 2017, 173(3): 1583-1593.
Saie K, Muhammad I, Nooraini M A, Renato I, Costas I, Ahmad A R. Induction of apoptosis and cytotoxicity by isothiocyanate sulforaphene in human hepatocarcinoma hepg2 cells. Nutrients, 2018, 10(6):718-.
Shishu, Kaur I P. Inhibition of cooked food-induced mutagenesis by dietary constituents: comparison of two natural isothiocyanates. Food Chemistry, 2009, 112(4): 977-981.
Griffiths D W, Birch A N E , Hillman J R . Antinutritional compounds in the brassicaceae: analysis,biosynthesis,chemistry and dietary effects. Journal of Horticultural Science and Biotechnology, 1998, 73(1): 1-18.
Kliebenstein D J, Cacho N I. Nonlinear Selection and a Blend ofConvergent, Divergent and Parallel Evolution Shapes Natural Variation in Glucosinolates. Advances in Botanical Research, 2016, 80: 31-55.
Peterka H, Budahn H, Schrader O, Ahne R, Schütze W. Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition. Theoretical and Applied Genetics, 2004, 109(1):30-41.
Jeong Y M, Chung W H, Mun J H, Kim N, Yu H J. De novo assembly and characterization of the complete chloroplast genome of radish(Raphanus sativus L.). Gene, 2014, 551(1):39-48.
Mizushima U. Genome analysis in Brassica and allied genera.Brassica crops and wild allies, 1980, 89-106.
Lange W, Toxopeus H, Lubberts J H, Dolstra O, Harrewijn J L. The development of raparadish (x brassicoraphanus, 2n=38), a new crop in agriculture. EUPHYTICA, 1989, 40(1-2):1-14.
Bannerot H, Boulidard L, Cauderon Y, Tempe J. Cytoplasmic male sterility transfer from Raphanus to Brassica.In Proc.Eucarpia Meeting Cruciferae Vegetable.Crops Sect, 1974, (pp. 52-54).
Brown G G, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung W, Landry B S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. The Plant Journal, 2003, 35(2):262-272.
Verkerk R. Evaluation of glucosinolate levels throughout the production chain of Brassica vegetables towards a novel predictive modelling approach. Wageningen Universiteit, 2002.
何湘漪,何洪巨,范志红,赵学志.烹调方法对3种十字花科蔬菜中硫代葡萄糖苷物质保存的影响.中国食品学报, 2013, 13(8):124-131.
He X, He H, Fan Z, Zhao X. Effect of Cooking on Glucosinolates in Three Cruciferous Vegetables. Journal of Chinese Institute Of Food Science and TEchnology, 2013, 13(8):124-131.
Schonhof I, Krumbein A, Bernhard Brückner. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower, Food/Nahrung, 2004, 48(1):25-33.
Lou P, Zhao J, He H, Hanhart C, Pino Del Carpio D, Verkerk R, Custers J, Koornneef M, Bonnema G. Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New phytologist, 2008, 179(4): 1017-1032.
Zhang J, Liu Z, Liang J, Wu J, Cheng F, Wang X. Three genes encoding aop2, a protein involved in aliphatic glucosinolate biosynthesis, are differentially expressed in¥r, brassica rapa. Journal of Experimental Botany, 2015, 66(20): 6205-6218.
Li J,Hansen B G,Ober J A,Kliebenstein D J,Halkier B A. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. PLANT PHYSIOLOGY, 2008, 148(3):1721-1733.
PDF(20338 KB)

文章所在专题

资源与环境

15

Accesses

0

Citation

Detail

段落导航
相关文章

/