大豆蛋白含量新位点qPRO-19-1 的定位

武阳春,郭兵福,谷勇哲,栾晓燕,邱红梅,刘鑫磊,李海燕,邱丽娟

植物遗传资源学报. 2021, 22(1): 139-148

PDF(13629 KB)
PDF(13629 KB)
植物遗传资源学报 ›› 2021, Vol. 22 ›› Issue (1) : 139-148. DOI: 10.13430/j.cnki.jpgr.20200226001
论文

大豆蛋白含量新位点qPRO-19-1 的定位

  • 武阳春1,2, 郭兵福3, 谷勇哲 2,栾晓燕 4,邱红梅 5,刘鑫磊 4,李海燕 1,邱丽娟 1,2
作者信息 +

Mapping of a New Quantitative Locus qPRO-19-1 Associated with Seed Crude Protein Content in Soybean( Glycine max L.)

  • WU Yang-chun1,2, GUO Bing-fu3, GU Yong-zhe2, LUAN Xiao-yan4, QIU Hong-mei5, LIU Xin-lei4, LI Hai-yan1, QIU Li-juan1,2
Author information +
History +

摘要

大豆是重要的粮食作物和经济作物,其籽粒蛋白约为 40%,是植物蛋白的重要来源之一。国产大豆主要用于食用,提高 大豆蛋白含量是主要的育种目标。因此,发掘大豆蛋白含量相关基因,对开发分子标记并培育高蛋白食用大豆具有重要意义。本 研究以低蛋白大豆品种中黄 35 为母本,以源自日本的高蛋白大豆十胜长叶为父本,构建了重组自交系( RIL, recombination inbred lines)群体。利用集群分离分析法( BSA, bulked segregant analysis)在 3 条染色体筛选出 9 个与蛋白含量相关的 SSR 标记,其中位 于 19 号染色体的 QTL 尚未见报道。进一步利用完备区间作图法( ICIM-ADD)分析 RIL 群体 F2: 15 和 F2: 16,在 19 号染色体重复定 位了 1 个蛋白质含量相关 QTL qPRO-19-1,位于分子标记 SSR_19_38 和 SSR_19_59 之间, LOD 值分别为 3.43 和 3.98,贡献率分别 为 7.81% 和 14.87%,高蛋白等位基因来自于高蛋白亲本十胜长叶。 qPRO-19-1 的定位区间长度为 385 kb,共有注释基因 36 个。本 研究定位了蛋白质含量相关的新位点 qPRO-19-1,为大豆高蛋白基因的图位克隆及分子标记育种奠定了基础。

Abstract

Soybean is an economically-important food crop that contains about 40% of grain protein. The soybeans harvested from China are mainly used for food, and breeding for higher protein content is one of the main targets in soybean. Exploration of the genes related to soybean protein content and development of molecular markers are thus of great significance. In this study, a recombinant inbred line population was used by crossing a low protein soybean variety‘ ZH35’ ( female parent) with the high protein accession‘ Tokachi nagaha’ ( male parent) that was introduced from Japan. With the Bulked Segregant Analysis( BSA) analysis, nine SSR markers that associated to protein content were identified on three chromosomes, including chromosome 19 where no QTL was previously reported. This QTL qPRO-19-1 was allocated using an inclusive complete interval mapping method( ICIM-ADD) to the genetic interval of the molecular markers SSR_19_38 and SSR_19_59. This elite allele, which was derived from‘ Tokachi Nagaha’ , could explain 7.81% and 14.87% of phenotypic variations in F2: 15and F2: 16 with the LOD values of 3.43 and 3.98, respectively. The physical interval of qPRO-19-1 expanded 385 kb that harbored 36 annotated genes. Collectively, the genetic mapping of the new QTL qPRO-19-1 laid the foundation for map-based cloning gene and molecular marker assisted breeding for high protein soybean varieties.

关键词

大豆 / 重组自交系 / 蛋白质含量 / QTL

Key words

soybean; RIL; protein content; QTL

引用本文

导出引用
武阳春,郭兵福,谷勇哲,栾晓燕,邱红梅,刘鑫磊,李海燕,邱丽娟. 大豆蛋白含量新位点qPRO-19-1 的定位. 植物遗传资源学报. 2021, 22(1): 139-148 https://doi.org/10.13430/j.cnki.jpgr.20200226001
WU Yang-chun,GUO Bing-fu,GU Yong-zhe,LUAN Xiao-yan,QIU Hong-mei,LIU Xin-lei,LI Hai-yan and QIU Li-juan. Mapping of a New Quantitative Locus qPRO-19-1 Associated with Seed Crude Protein Content in Soybean( Glycine max L.). Journal of Plant Genetic Resources. 2021, 22(1): 139-148 https://doi.org/10.13430/j.cnki.jpgr.20200226001

参考文献

[1] Leamy L J, Zhang H Y, Li C B, Chen C Y, Song B H. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics, 2017, 18(1): 1-18
[2] Patil G, Vuong T D, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu F, Kumparla S, Shannon J G, Varshney R K, Nguyen H T. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnology Journal, 2018, 16(11): 1939-1953
[3] Bostein D R, White R L, Skolnick M, Davis R W. Construction of a genentic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32(3): 314-331
[4] 邱丽娟, Randaiil N, Lilao V. 利用RAPD标记鉴定大豆种质. 作物学报, 1997, 4(4): 408-417Qiu L J, Randaiil N, Lilao V. Evaluation of soybean germplasm with random amplification polymorphic DNA (RAPD) Markers. Acta Agronomica Sinica, 1997, 4(4): 408-417
[5] Young W P, Schupp J M, Keim P. DNA methylation and AFLP marker distribution in the soybean genome. Theoretical and Applied Genetics, 1999, 99(5): 785-792
[6] Mello M B, Milene M, Imaculada Z M, Quecini V, Pinheiro J B. Genetic diversity in soybean germplasm identified by SSR and EST-SSR markers. Pesquisa Agropecuária Brasileira, 2010, 45(3): 276-283
[7] Keim P, Diers B W, Shoemaker R C. Genetic analysis of soybean hard seededness with molecular markers. Theoretical and Applied Genetics, 1990, 79(4): 465-469
[8] Liang H Z, Yu Y L, Wang S F, Lian Y, Wang T F, Wei Y L, Gong P T, Liu X Y, Fang X J, Zhang M C. QTL Mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agricultural Sciences in China, 2010, 9(8): 1108-1116
[9] Lu W G , Wen Z X, Li H C, Yuan D H, Li J Y, Zhang H, Zhong W H, Cui S Y, Du W J. Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theoretical and Applied Genetics, 2013, 126(2): 425-433
[10] Wang J, Chen P, Wang D, Shannon G, Zeng A, Orazaly M, Wu C. Identification and mapping of stable QTL for protein content in soybean seeds. Molecular Breeding, 2015, 35(3): 92-102
[11] Wang X Z, Jiang G L, Green M, Scott R A, Song Q J, Hyten D L, Cregan P B. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Molecular Genetics and Genomics, 2014, 289(5): 935-949
[12] Shan D P, Liu C Y, Jiang H W, Dong X H, Chen Q S, Hu G H. QTL analysis of soybean protein content using two methods in 5 different environments. Chinese Journal of Oil Crop Sciences, 2011, 33(1): 9-14
[13] Qi Z M, Hou M, Han X, Liu C Y, Jiang H W, Xin D W, Hu G H, Chen Q S. Identification of quantitative trait loci (QTLs) for seed protein concentration in soybean and analysis for additive effects and epistatic effects of QTLs under multiple environments. Plant Breeding, 2014, 133(4): 499-507
[14] 郭娟娟, 常汝镇, 章建新, 张巨松, 关荣霞, 邱丽娟. 日本大豆种质十胜长叶对我国大豆育成品种的遗传贡献分析. 大豆科学, 2007, 26(6): 807-812Guo J J, Chang R Z, Zhang J X, Zhang J S, Guan R X, Qiu L J. Contribution of Japanese soybean germplasm Tokachi-nagaha to Chinese soybean cultivars. Soybean Science, 2007, 26(6): 807-812
[15] Song Q J, Jia G F, Zhu Y L, Grant D, Nelson R T, Hwang E, Hyten D L, Cregan P B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Science, 2010, 50(5): 1950-1960
[16] Kabelka E A, Diers B W, Fehr W R, Leroy A R, Baianu I C, You T F, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop science, 2004, 44(3): 784-791
[17] Panthee D R, Pantalone V R, West D R, Saxton A. Quantitative trait loci for seed protein and oil concentration and seed size in soybean. Crop Science, 2005, 45(5): 2015-2022
[18] 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35(2): 239-245Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agronomica Sinica, 2009, 35(2): 239-245
[19] 姚丹, 王丕武, 闫伟, 张君, 张扬, 曲静. 2种作图法对大豆蛋白含量性状QTL定位的比较研究. “西北农林科技大学学报: 自然科学版”, 2010, 38(8): 47-54Yao D, Wang P W, Yan W, Zhang J, Zhang Y, Qu J. Comparative research on QTL location for protein content by two kinds of mapping methods. “Journal of Northwest A F University: Natural Science Edition”, 2010, 38(8): 47-54
[20] 朱月明, 韩粉霞, 孙君明, 闫淑荣, 杨华. 利用回交导入系群体定位大豆蛋白质含量与脂肪含量QTL. 植物遗传资源学报, 2017, 18(6): 208-213Zhu Y M, Han F X, Sun J M, Yan S H, Yang H. Detection of soybean protein oil content QTL with backcross introgression lines. Journal of Plant Genetic Resources, 2017, 18(6): 208-213
[21] 陈明阳, 张金巍, 韩粉霞, 孙君明, 邹筱, 闫淑荣, 杨华, 张晶莹, 田玲. 利用BC2群体定位大豆蛋白质含量QTL. 中国油料作物学报, 2013, 35(6): 617-623Chen M Y, Zhang J W, Han F X, Sun J M, Zou X, Yan S R, Yang H, Zhang J Y, Tian L. Detection of soybean protein content QTL with BC2 backceoss population. Chinese Journal of Oil Crop Sciences, 2013, 35(6): 617-623
[22] 马勇. SSR标记在植物遗传育种中的应用. 小麦研究, 2011, 32(1): 29-34Ma Y. SSR markers and its application to plant genetics and breeding. Journal of wheat research, 2011, 32(1): 29-34
[23] 王彪, 邱丽娟. 大豆SSR技术研究进展. 植物学通报, 2002, 19(1): 44-48Wang B, Qiu L J. Current advance of simple sequence repeats in soybean. Chinese Bulletin of Botany, 2002, 19(1): 44-48
[24] 梁慧珍, 王树峰, 余永亮, 练云, 王庭峰, 位艳丽, 巩鹏涛, 刘学义, 方宣钧. 大豆异黄酮与脂肪、蛋白质含量基因定位分析. 中国农业科学, 2009, 42(8): 2652-2660Linag H Z, Wang S F, Yu Y L, Lian Y, Wang T F, Wei Y L, Gong P T, Liu X Y, Fang X J. QTL mapping of isoflavone, oil and protein content in soybean. Scientia Agricultura Sinica, 2009, 42(8): 2652-2660
[25] Li Y H, Smulders M J M, Chang R Z, Qiu L J. Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis. Conservation Genetics, 2011, 12(5): 1145-1157
[26] Lin Y H, Zhang L J, Li L W, Zhang L F, Ran X. QTLs mapping related to protein content of soybeans. Soybean Science, 2010, 29(2): 207-209
[27] Jun T H, Van K, Kim M Y, Lee S H, Walker D R. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 2008, 162(2): 179-191
[28] Zhang Z C, Chen X L, Teng Q S, Teng W L, Yang Q K, Li W B. QTL mapping of seed oil and protein content of soybean. Soybean Science, 2004, 23(2): 81-85
[29] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Science, 1999, 39(6): 1642-1651
[30] Tajuddin, Tenku, Watanabe, Ryoichi M, Kyuya H, Sumio K. Application of near infrared transmittance spectroscopy to the estimation of protein and lipid contents in single seeds of soybean recombinant inbred lines for quantitative trait loci analysis. Journal of Near Infrared Spectroscopy, 2002, 10(1): 315-348
[31] Diers B W, Keim P, Fehr W R, Shoemaker R C. RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics. 1992, 83(5): 608-612
[32] Lu W G, Wen Z X, Li H C, Yuan D H, Li J Y, Zhang H, Huang Z W, Cui S Y, Du W J. Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theoretical and Applied Genetics, 2013, 126(2): 425-433
[33] Mao T T, Jiang Z F, Han Y P, Teng W L, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breeding, 2013, 132(6): 630-641
[34] Mansur L, Orf J, Chase K, Jarvik T, Cregan P B, Lark K. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Science, 1996, 36(5): 1327-1336
[35] Jun T H, Van K, Kim M Y, Lee S H, Walker D R. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 2008, 162(2): 179-191
[36] 仕相林, 孙亚男, 王家麟, 刘春燕, 陈庆山, 胡国华. 大豆叶片性状QTL的定位及Meta分析. 作物学报, 2012, 38(2): 256-263.Ren X L, Sun Y N, Wang J L, Liu C Y, Chen Q S, Hu G H. Mapping and Meta-analysis of QTLs for leaf traits in soybean. Acta Agronomica Sinica, 2012, 38(2): 256-263
[37] 刘春燕, 齐照明, 韩冬伟, 单大鹏, 蒋洪蔚, 陈庆山, 胡国华. 大豆产量相关性状的多年多点QTL分析. 东北农业大学学报, 2010, 41(11): 1-9.Liu C Y, Qi Z M, Han D W, Shan D P, Jiang H W, Chen Q S, Hu G H. QTL analysis of yield components on soybean under different environment. Journal of Northeast Agricultural University, 2010, 41(11): 1-9
[38] 范冬梅, 孙殿君, 马占洲, 刘春燕, 杨振, 曾庆力, 辛大伟, 蒋洪蔚, 邱鹏程, 陈庆山, 胡国华. 多种环境下大豆单株粒重QTL的定位与互作分析. 作物学报, 2013, 39(6): 1021-1029Fan D M, Sun D J, Ma Z Z, Liu C Y, Yang Z, Zeng Q L, Xin D W, Jiang H W, Qiu P C, Chen Q S, Hu G H. QTL mapping and interaction analysis of seed weight per plant in soybean among different environments. Acta Agronomica Sinica, 2013, 39(6): 1021-1029
PDF(13629 KB)

77

Accesses

0

Citation

Detail

段落导航
相关文章

/