新疆野苹果叶绿体DNA变异与遗传进化分析

高源,王大江,王昆,丛佩华,张彩霞,李连文,朴继成

植物遗传资源学报. 2020, 21(3): 579-587

PDF(1618 KB)
PDF(1618 KB)
植物遗传资源学报 ›› 2020, Vol. 21 ›› Issue (3) : 579-587. DOI: 10.13430/j.cnki.jpgr.20190719002
论文

新疆野苹果叶绿体DNA变异与遗传进化分析

  • 高源, 王大江, 王昆, 丛佩华, 张彩霞, 李连文, 朴继成
作者信息 +

Chloroplast DNA Variation and Genetic Evolution of Malus sieversii M. Roem.

  • GAO Yuan, WANG Da-jiang, WANG Kun, CONG Pei-hua, ZHANG Cai-xia, LI Lian-wen, PIAO Ji-cheng
Author information +
History +

摘要

利用 4 对叶绿体 DNA 引物扩增新疆巩留、霍城和新源 3 个来源地区的 242 份新疆野苹果种质资源的 4 个非编码区 trnH-psbA、trnS-trnG spacer + intron、trnT-5'trnL 和 5'trnL-trnF,基于 4 个叶绿体基因间区的序列变异,从母系遗传的角度评价遗传变异和不同居群的遗传进化关系。结果表明:4 个叶绿体 DNA 非编码区经测序、拼接、比对和合并之后的片段长度为 3812bp,共有 171 个多态性变异位点,其中包含 6 个单一突变位点、16 个简约信息位点和 149 个插入-缺失位点。在 242份新疆野苹果种质中,trnH-psbA、trnS-trnG spacer + intron、trnT-5'trnL 和 5'trnL-trnF 区域的变异位点的数量分别为 68 个、25 个、77 个和 1 个,单倍型数量分别为 36 个、6 个、6 个和 2 个,合并之后的叶绿体 DNA 片段的单倍型为 52 个。核苷酸多样性和单倍型多样性最高的区域均为 trnH-psbA(Hd=0.773,Pi=0.01982),最低的为 5'trnL-trnF(Hd=0.025,Pi=0.00002)。242 份新疆野苹果种质 4 个叶绿体 DNA 区域合并后的遗传多样性较高(Hd=0.806,Pi=0.00291)。Tajima’s D 检验中,4 个cpDNA 区域合并后片段在 P<0.05 水平上显著,4 个 cpDNA 区域整体不遵循中性进化模型,自然选择的压力是新疆野苹果遗传进化的主要动力。新疆野苹果的遗传变异主要存在于居群内部,新疆巩留和新源居群间的遗传距离较近,与霍城居群间遗传距离相对较远,居群间的遗传分化与地理距离相关。3 个地区的新疆野苹果各自经历着遗传分化但又存在频繁的基因交流,有向新疆新源的新疆野苹果演化的趋势。

Abstract

Four non-coding region, trnH-psbA 、 trnS-trnG spacer + intron 、 trnT-5'trnL and 5'trnL-trnF of 242 germplasm accessions of Malus sieversii from 3 sources of Gongliu, Huocheng and Xinyuan of Xinjiang Uygur Autonomous Region of China were amplified by four primers. Based on the genetic variation of the four chloroplast intergenic regions, the genetic variation and evolution of Malus sieversii populations were explored from the perspective of maternal inheritance. The results showed that the length of the four non-coding regions of chloroplast DNA was 3812 bp after sequencing, splicing, alignment and merging, and 171 variable sites were detected, including 6 singleton variable sites, 16 parsimony informative sites and 149 insertion-deletion gaps. Among the 242 accessions of Malus sieversii the number of variable sites of the regions trnH-psbA, trnS-trnG spacer + intron, trnT-5'trnL and 5'trnL-trnF were 68, 25, 77 and 1. The number of haplotypes for the four regions were 36, 6, 6 and 2, and after the four regions merged the haplotypes of chloroplast DNA fragments were 52. The region with the highest nucleotide and haplotype diversity was trnH-psbA (Hd=0.773 , Pi=0.01982), and the nucleotide and haplotype diversity of 5'trnL-trnF was the lowest (Hd=0.025 , Pi=0.00002). The cpDNA diversity of Malus sieversii with the four chloroplast DNA regions merged was high (Hd=0.806,Pi=0.00291). Tajima’s test showed that all the Tajima’s D values are statistically significant at P<0.05, indicating that the overall variation of the four chloroplast regions had not followed the neutral theory of molecular evolution, and the pressure of natural selection is the main driving force of genetic evolution of Malus sieversii. The genetic variation of Malus sieversii mainly existed within populations. The distance between populations from Gongliu and Xinyuan of Xinjiang was closer than that between populations from Huocheng and Gongliu or from Huocheng and Xinyuan of Xinjiang. The genetic differentiation correlated with the geographical distances. Malus sieversii from the 3 sources were experiencing genetic differentiation, but also having frequent gene exchanges among different populations, and had a tendency to evolve to Xinyuan population in Xinjiang.

关键词

新疆野苹果 / 叶绿体DNA / 遗传变异 / 遗传进化

Key words

Malus sieversii / cloroplast DNA / genetic variation / genetic evolution

引用本文

导出引用
高源,王大江,王昆,丛佩华,张彩霞,李连文,朴继成. 新疆野苹果叶绿体DNA变异与遗传进化分析. 植物遗传资源学报. 2020, 21(3): 579-587 https://doi.org/10.13430/j.cnki.jpgr.20190719002
GAO Yuan,WANG Da-jiang,WANG Kun,CONG Pei-hua,ZHANG Cai-xia,LI Lian-wen and PIAO Ji-cheng. Chloroplast DNA Variation and Genetic Evolution of Malus sieversii M. Roem.. Journal of Plant Genetic Resources. 2020, 21(3): 579-587 https://doi.org/10.13430/j.cnki.jpgr.20190719002

参考文献

[1] 李育农. 苹果属植物种质资源研究. 北京: 中国农业出版社, 2001: 65-67Li Y N. Researches of Germplasm Resources of Malus Mill.. Beijing: China Agricultural Press, 2001: 65-67
[2] 张新时. 伊犁野果林的生态地理特征和群落学问题. 植物学报, 1973, 15(2): 239-253.Zhang X S. On the Eco-geographical Characters and the Problems of Classification of the Wild Fruit-Tree Forest in the Ili Valley of Sinkiang. Acta Botanica Sinica, 1973, 15(2): 239-253.
[3] 李育农. 世界苹果和苹果属植物基因中心的研究初报. 园艺学报, 1989, 16(2): 101-107.Li Y N. An Investigation of the Genetic Center of M. Pumila and Malus in the World. Acta Horticulturae Sinica, 1989, 16(2): 101-107.
[4] 冯涛, 张红, 陈学森. 新疆野苹果果实形态与矿质元素含量多样性以及特异性状单株. 植物遗传资源学报, 2006, 7(3): 270-276.Feng T, Zhang H, Chen X S, Zhang Y M, He T M, Feng J R, Xu Z. Genetic Diversity of Fruit Morphological Traits and Content of Mineral Element in Malus sieversii (Ldb .)Roem. and its Elite Seedlings. Journal of Plant Genetic Resources, 2006, 7(3): 270-276.
[5] Harris S A, Robinson J P, Juniper B E. Genetic clues to the origin of the apple. Trends in Genetics, 2002, 18: 426-430.
[6] Duan N B,Bai Y,Sun H H,Wang N,Ma Y M,Li M J,Wang X,Jiao C, Legall N, Mao L Y, Wan S B, Wang K, He T M, Feng S Q, Zhang Z Y, Mao ZQ, Shen X, Chen X L, Jiang Y M, Wu S J, Yin C M, Ge S F, Yang L, Jiang S H, Xu H F, Liu J X, Wang D Y, Qu C Z, Wang Y C, Zuo W F, Xiang L, Liu C, Zhang D Y, Gao Y, Xu Y M, Xu K N, Chao T, Fazio G, Shu H R, Zhong G Y, Cheng L L, Fei Z J, Chen X S. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communication, 2017, 8(2): 249.
[7] 王昆, 刘凤之, 高源. 中国苹果野生种自然地理分布、多型性及利用价值. 植物遗传资源学报, 2013, 14(6): 1025-1026.Wang K, Liu F Z, Gao Y, Wang D J, Gong X, Liu L J. The Natural Distribution, Diversity and Utilization of Wild Apple Species in China. Journal of Plant Genetic Resources, 2013, 14(6): 1013-1019.
[8] 阎国荣. 塞威氏苹果(Malus sieversii)在我国的自然分布及现状. 中国植物学会六十五周年年会学术报告及论文摘要汇编. 北京: 中国林业出版社, 1998: 306-307.Yan G R. The Distribution and Situation of Malus sieversii in China. A Compilation of Academic Reports and Abstracts of Papers at the 65th Anniversary Conference of the Chinese Botanical Society. Beijing: China Forestry Press, 1998: 306-307.
[9] 王大江, 王昆, 高源, 赵继荣, 刘立军, 龚欣, 李连文. 我国苹果属资源现代分布调查初报. 植物遗传资源学报, 2017, 18(6): 1116-1124.Wang D J, Wang K, Gao Y, Zhao J R, Liu L J, Gong X, Li L W. Preliminary Investigation of Modern Distribution of Malus Resources in China. Journal of Plant Genetic Resources, 2017, 18(6): 1116-1124.
[10] 林培钧, 崔乃然. 天山野果林资源: 伊犁野果林综合研究. 北京: 中国林业出版社, 2000.Lin P J, Cui N R. Wild Fruit Forest Resources in Tianshan Mountains: Comprehensive Study on Yili Wild Fruit Forest. Beijing: China Forestry Press, 2000.
[11] 闫秀娜, 李芳, 阎国荣, 于玮玮. 濒危植物新疆野苹果种子的萌发特性. 天津农学院学报, 2015, 22(2): 33-36.Yan X N, Li F, Yan G R, Yu W W. Preliminary Exploration on Seed Germination in Endangered Plant Malus sieversii. Journal of Tianjin Agricultural University, 2015, 22(2): 33-36.
[12] 刘忠权, 陈卫民, 许正, 梁巧玲. 新疆天山西部野苹果林分布与苹果小吉丁虫危害现状研究. 北方园艺, 2014, 38(17): 121-124.Liu Z Q, Chen W M, Xu Zheng, Liang Q L. Malus Sieversii Forest Distribution and Agrilus mali Matsumura Status of Damage in the West Part of Tianshan Mountains. Northern Horticulture, 2014, 38(17): 121-124.
[13] 林培钧, 崔乃然, 王磊. 天山野果林资源—伊犁野果林综合研究. 北京: 中国林业出版社, 2000.Lin P J, Cui N R, Wang L. Wild Fruit Forest Resources in Tianshan Mountains — Comprehensive Study on Yili Wild Fruit Forest. Beijing: China Forestry Press, 2000.
[14] 国家环境保护局. 中国生物多样性保护行动计划. 北京: 中国环境科学出版社, 1994.State Environmental Protection Agency. China Action Plan for Biodiversity Conservation. Beijing: China Environmental Science Press, 1994.
[15] 傅立国. 中国植物红皮书. 北京: 科学出版社, 1992.Fu L G. China Plant Red Data Book. Beijing: Science Press, 1992.<sub>
[16] </sub><sub>冯涛</sub><sub>, </sub><sub>陈学森</sub><sub>, </sub><sub>张艳敏</sub><sub>, </sub><sub>张春雨</sub><sub>, </sub><sub>张小燕</sub><sub>, </sub><sub>吴传金</sub><sub>. </sub><sub>新疆野苹果叶片抗氧化能力及多酚组分的研究</sub><sub>. </sub><sub>中国农业科学</sub><sub>2008, 41(8): 2386-2391.</sub>Feng T, Chen X S, Zhang Y M, Zhang C Y, Zhang X Y, Wu C J. Antioxidation and Phenolic Constituents in Xinjiang Wild Apple [Malus sieversii (Lebed.) Roem.] Leaf. Scientia Agricultura Sinica, 2008, 41(8): 2386-2391.
[17] 冯涛. 新疆野苹果 (Malus sieversii (Lebed.) Roem.) 部分表型性状遗传多样性研究. 泰安: 山东农业大学, 2007.Feng T. Study on Genetic Diversity of Phenotypic Traits in Malus sieversii (Lebed.) Roem. Taian: Shandong Agricultural University, 2007.
[18] 张小燕. 新疆野苹果化学成分的遗传多样性研究. 泰安: 山东农业大学, 2008.Zhang X Y. Study on Variations of Chemical Components in Malus sieversii. Taian: Shandong Agricultural University, 2008.
[19] 闫鹏, 韩立群, 梅闯, 刁永强, 许正, 张学超, 马凯, 艾沙江.买买提, 王继勋. 新疆野苹果 (Malus sieversii (Ledeb.) M.Roem.) 植物学性状遗传多样性及相关性分析. 植物遗传资源学报, 2016, 17( 4): 683-689.Yan P, Han L Q, Mei C, Diao Y Q, Xu Z, Zhan X C, Ma K, Aisajan M, Wang J X. Genetic Diversity and Correlation Analysis of Botanical Characters in Xinjiang Wild Apple (Malus sieversii (Ledeb.) Roem.). Journal of Plant Genetic Resources, 2016, 17(4): 683-689.
[20] 刘彬, 张云秀, 李芳, 于玮玮, 阎国荣. 新疆野苹果果实VC及可溶性蛋白含量的测定分析.天津农学院学报, 2016, 23(4): 14-17.Liu B, Zhang Y X, Li F, Yu W W, Yan G R. Measurement and Comparison of Vitamin C and Soluble Protein Content of Malus sieversii Fruits. 2016. Journal of Tianjin Agricultural University, 23(4): 14-17.
[21] 刁永强, 许正, 闫鹏, 陈淑英, 张学超, 刘君. 新疆野苹果资源类型表型性状鉴定及优异资源的初步筛选. 经济林研究, 2019, 37(1): 17-24, 49.Diao Y Q, Xu Z, Yan P, Chen S Y, Zhang X C, Liu J. Phenotypic Characteristic Identification and Preliminary Selection of Excellent Resources in Malus sieversii Resource Types. Non-wood Forest Research, 2019, 37(1): 17-24, 49.
[22] Zhang C Y, Chen X S, He T M, Liu X L, Feng T, Yuan Z H. Genetic Structure of Malus sieversii Population from Xinjiang, China, Revealed by SSR Markers. Journal of Genetics and Genomics, 2007, 34(10): 947-955.
[23] 秦伟, 沙红, 刘立强, 廖康, 耿文娟, 王云. 新疆野苹果资源遗传多样性SSR分析. 果树学报, 2012, 29(2): 161-165.Qin W, Sha H, Liu L Q, Liao K, Geng W J, Wang Y. SSR Analysis for Genetic Diversity of Malus sieversii from Xinjiang, China. Journal of Fruit Science, 2012, 29(2): 161-165.
[24] 董研, 张军, 任亚超, 韩志校. 中国新疆野苹果天然群体遗传多样性SSR分析. 植物遗传资源学报, 2013, 14(5): 771-777.Dong Yan, Zhang J, Ren Y C, Han Z X. Study on Genetic Diversity of Natural Population in Malus sieversii with Microsatellite. Journal of Plant Genetic Resources, 2013, 14( 5) : 771-777.
[25] 马衣努尔姑.吐地, 张延辉, 秦伟, 司洪章, 杨新峰. 基于SSR分子标记技术的新疆苹果资源指纹图谱的构建. 新疆农业大学学报, 2016, 39(1): 26-34.Maunur T, Zhang Y H, Qin W, Si H Z, Yang X F. Construction of Fingerprint of Apple Resources in Xinjiang Based on SSR Molecular Markers. Journal of Xinjiang Agricultural University, 2016, 39(1): 26-34.
[26] 倪梁红, 赵志礼, 米玛. 药用植物叶绿体基因组研究进展. 中药材, 2015, 38(9): 1990-1994.Ni L H, Zhao Z L, Mi M. Advances in Research on Chloroplast Genome of Medicinal Plants. Journal of Chinese Medicinal Materials, 2015, 38(9): 1990-1994.
[27] 李宏韬, 赵淑青, 赵彦修, 张慧. 叶绿体基因工程简介. 遗传, 2003, 25(4): 495-498.Li H T, Zhao S Q, Zhao X X, Zhang H. The Introduction of Chloroplast Gene Engineering. Hereditas, 2003, 25(4): 495-498.
[28] 张韵洁, 李德铢. 叶绿体系统发育基因组学的研究进展. 植物分类与资源学报, 2011, 33(4): 365-375.Zhang Y J, Zhang D Z. Advances in Phylogenomics Based on Complete Chloroplast Genomes. Plant Diversity and Resources, 2011, 33(4): 365-375.
[29] 付涛, 王志龙, 钱萍仙, 李文, 袁冬明, 严春风. 高等植物DNA条形码最新研究进展及其应用. 核农学报, 2016, 30(5): 887-896.Fu T, Wang Z L, Qian P X, Li W, Yuan D M, Yan C F. The Latest Research Progress and Application of the DNA Barcode in Higher Plants. Journal of Nuclear Agricultural Sciences, 2016, 30(5): 887-896.
[30] Shaw J, Lickey E B, Beck J T, Farmer S B, Liu W S, Miller J, Siripun K C, Winder C T, Schilling E E, Small R L. The Tortoise and the Hare Ⅱ: Relative Utility of 21 Noncoding Chloroplast and Sequences for Phylogenetic Analysis. American Journal of Botany, 2005, 921(1): 142-166.
[31] Volk G M, Henk A D, Baldo A, Fazio G, Chao C T, Richards C M. Chloroplast Heterogeneity and Historical Admixture Within the Genus Malus. American Journal of Botany, 2015, 102(7): 1198-1208.
[32] Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology Evolution, 2016, 33(7): 1870-1874.
[33] Librado P, Rozas J. DnaSP v5: A Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinformatics, 2009, 25: 1451-1452.
[34] Saito N, Nei M. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 1987, 4(4): 406-425.
[35] Excoffier L, Lischer H E. Arlequin Suite ver 3.5: A New Series of Programs to Perform Population Genetics Analyses Under Linux and Windows. Molecular Ecology Resources, 2010, 10: 564-567.
[36] 杨美玲. 新疆野苹果(Malus sieversii)生物学特性和居群遗传多样性研究. 天津: 天津农学院, 2014.Yang M L. Biological Characteristics and Genetic Diversity of Population of Malus Sieversii. Tianjin: Tianjin Agricultural University, 2014.
[37] 张春雨, 陈学森, 林群, 苑兆和, 张红, 张小燕, 崇祺, 吴传金. 新疆野苹果群体遗传结构和遗传多样性的SRAP分析. 园艺学报, 2009, 36 (1): 7 -14.Zhang C Y, Chen X S, Lin Q, Yuan Z H, Zhang H, Zhang X Y, Liu C Q, Wu C J. SRAP Markers for Population Genetic Structure and Genetic Diversity in Malus sieversii from Xinjiang, China. Acta Horticulturae Sinica, 2009, 36 (1): 7 -14.
PDF(1618 KB)

文章所在专题

水稻

16

Accesses

0

Citation

Detail

段落导航
相关文章

/