小麦F-box/Kelch类基因TaFKOR23的抗逆相关表达模式及分子互作蛋白鉴定

魏春茹,孟钰玉,范润侨,赵梦伊,于秀梅,赵伟全,康振生,刘大群

植物遗传资源学报. 2020, 21(3): 695-705

PDF(11514 KB)
PDF(11514 KB)
植物遗传资源学报 ›› 2020, Vol. 21 ›› Issue (3) : 695-705. DOI: 10.13430/j.cnki.jpgr.20190626002
论文

小麦F-box/Kelch类基因TaFKOR23的抗逆相关表达模式及分子互作蛋白鉴定

  • 魏春茹1, 孟钰玉1, 范润侨1, 赵梦伊1, 于秀梅1,2,3, 赵伟全3, 康振生2, 刘大群3
作者信息 +

Stress-related Expression Profile of F-box/Kelch Gene TaFKOR23 in Wheat and Molecular Characterization of the Interacting Target Protein

  • WEI Chun-ru1, MENG Yu-yu1, FAN Run-qiao1, ZHAO Meng-yi1, YU Xiu-mei1,2,3, ZHAO Wei-quan3, KANG Zhen-sheng2, LIU Da-qun3
Author information +
History +

摘要

F-box 蛋白在泛素介导的蛋白质降解过程中负责待降解底物的识别,近年来,其在植物抵御逆境中的作用已引起愈 来愈广泛的关注。为了解 F-box 成员在小麦中响应生物和非生物逆境的表达情况及作用机制,本研究从小麦抗叶锈病近等基 因系 TcLr15 中克隆了 F-box 基因 TaFKOR23 的完整编码区序列,该基因编码一个有 421 个氨基酸残基的蛋白,N 端具有 F-box 结构域,C 端带有 2 个明显的 Kelch 结构域,属于 F-box/Kelch 类型基因。系统进化分析表明,TaFKOR23 与粗山羊草(Aegilops tauschii)中的 F-box/Kelch-repeat protein OR23同源性最高,其次与二穗短柄草(Brachypodium distachyon)中的 F-box/Kelch-repeat protein OR23 同源性也较高。利用 qRT-PCR 对接种亲和及非亲和叶锈菌、激素处理、非生物逆境胁迫后 TcLr15 植株中该基因 的表达模式进行分析。研究结果表明,TaFKOR23 基因表达受叶锈菌侵染的诱导,但在亲和与非亲和组合间的表达量无明显差 异;受 ABA、SA 和 MeJA 3 种激素及盐处理后,该基因表达量均呈上调表达趋势,但受 PEG 处理的影响较小;该基因在旗叶 中的表达量远高于其他部位。利用酵母双杂交文库筛选并验证与该基因编码蛋白互作的下游靶蛋白。经文库筛选得到 11 种可 能与 TaFKOR23 互作的靶蛋白,进一步回转验证及β-半乳糖苷酶检测结果表明 TaFKOR23 与 TaSKP1、TaSLY 和 TaChitinase 均存在 相互作用。研究结果为深入解析小麦中 Kelch 类 F-box 基因的功能及代谢网络奠定了基础,并拓宽了对植物中 Kelch 类 F-box 基因的功能认识。

Abstract

F-box protein is responsible for the recognition of substrates to be degraded in the process of ubiquitin-mediated protein degradation. In recent years, the role of F-box protein in plant resistance to stresses has attracted more and more attention. In order to understand the expression profile and molecular mechanism of F-box members in response to biotic/abiotic stresses in wheat, TcLr15 - a near isogenic line against leaf rust pathogen, was used as the material to obtain the complete coding region (encoding a polypeptide of 421 aa) of wheat F-box gene TaFKOR23. Wheat TaFKOR23 includes 1 F-box domain at N-terminal and 2 Kelch domains at C-terminal, which means that the wheat TaFKOR23 belongs to F-box/Kelch subfamily. Phylogenetic tree showed that wheat TaFKOR23 had extremely high homology with F-box/Kelch-repeat protein OR23 from Aegilops tauschii, and had high homology with that from Brachypodium distachyon. Expression profiles of the gene in TcLr15 plants after treatment with leaf rust pathogen, 3 hormones (ABA, SA and MeJA) and abiotic stresses (NaCl and PEG) were analyzed by qRT-PCR in the present study. No significant difference was observed for TaFKOR23 transcripts accumulation between compatible and incompatible combinations; TaFKOR23 showed up-regulated expression after treatment with the 3 hormones and NaCl, but less affected by PEG; TaFKOR23 prominently expressed in flag leaves than in other parts of wheat. Target proteins interacting with TaFKOR23 were screened and identified by yeast two-hybrid, 11 kinds of target proteins were obtained by library screening, and further results showed that TaFKOR23 can interact with TaSKP1, TaSLY and TaChitinase. The research results laid a solid foundation for further understanding the function and metabolic network of F-box/Kelch genes in wheat, and broadened the functional knowledge of Kelch like F-box genes in plant.

关键词

小麦;F-box/Kelch;TaFKOR23;表达模式;蛋白互作

Key words

wheat / F-box/Kelch / TaFKOR23 / expression pattern / protein interaction

引用本文

导出引用
魏春茹,孟钰玉,范润侨,赵梦伊,于秀梅,赵伟全,康振生,刘大群. 小麦F-box/Kelch类基因TaFKOR23的抗逆相关表达模式及分子互作蛋白鉴定. 植物遗传资源学报. 2020, 21(3): 695-705 https://doi.org/10.13430/j.cnki.jpgr.20190626002
WEI Chun-ru,MENG Yu-yu,FAN Run-qiao,ZHAO Meng-yi,YU Xiu-mei,ZHAO Wei-quan,KANG Zhen-sheng and LIU Da-qun. Stress-related Expression Profile of F-box/Kelch Gene TaFKOR23 in Wheat and Molecular Characterization of the Interacting Target Protein. Journal of Plant Genetic Resources. 2020, 21(3): 695-705 https://doi.org/10.13430/j.cnki.jpgr.20190626002

参考文献

[1]刘相元, 胡弘历, 欧阳华芳, 高大明. CRL E3泛素连接酶复合体研究进展[J]. 中国细胞生物学学报. 2014, 36(2):157-168Liu X Y, Hu H L, Ouyang H F, Gao D M. CRL E3complexes: assembled fo destruction[J]. Chinese Journal of Cell Biology. 2014, 36(2):157-168
[2]Risseeuw E P, Daskalchuk T E, Banksy T W, Liu E W, Cotelesagez J, Hellmann H, Estelleo M, Somers D E, William L C. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis[J]. Plant Journal. 2003, 34:753-767
[3]Kipreos E T, Michele P. The F-box protein family[J]. Genome Biology. 2000, 1(5):3002.1-3002.7
[4]Jain M, Nijhawan A, Arora R,Agarwal P, Ray S, Sharma P, Kapoor S,Tyagi A K, KhuranaJ P. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress[J]. Plant physiology. 2007, 143(4):1467-1483
[5]Hermand D. F-box proteins:more than baits for the SCF?[J]. Cell Division. 2006, 1:30-35
[6]Ou C Y, Pi H, Chien C T. Control of protein degradation by E3 ubiquitin ligases in Drosophila eye development[J]. Trends in Genetics. 2003, 19(7):382-389
[7]霍冬英, 郑炜君, 李盼松, 徐兆师, 周永斌, 陈明, 马有志, 闵东红, 张小红. 谷子F-box家族基因的鉴定、分类及干旱响应[J]. 作物学报. 2014, 40(9):1585-1594Huo D Y, Zheng W J, Li P S, Xu Z S, Zhou Y B, Chen M, Ma Y Z, Min D H, Zhang X H. Identification, classification and drought response of F-box gene family in foxtailmillet[J]. Acta Agronomica Sinica. 2014, 40(9):1585-1594
[8]Shefali G, Vanika G, Chandra K, Bhatia S. Genome-wide survey and expression analysis of F-box genes in chickpea[J]. BMC Genomics. 2015, 16(1):67-81
[9]Gagne J M, Downes B P, Shiu S H, Durski A M, Vierstra R D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America. 2002, 99 ( 17):11519-11524
[10]秘彩莉, 刘旭, 张学勇. F-box蛋白质在植物生长发育中的功能[J]. 遗传. 2006, 28(10):1337-1205Bi C L, Liu X, Zhang X Y. TheSFunctionSofSF-boxSProteinSinSPlantSGrowthSandSDevelopment[J]. Hereditas. 2006, 28(10):1337-1342
[11]张玉娥. 拟南芥保卫细胞特异表达的F-box蛋白DOR负向调节耐旱性[D]. 北京: 中国农业大学. 2005Zhang Y E. A guard cell specific F-box protein DOR negatively regulates drought tolerance in Arabidopsis thaliana[D]. Beijing: China Agricultural University. 2005
[12]Zhang Y, Xu W, Li Z, Deng X W, Wu W, Xue Y. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis[J]. Plant Physiology. 2008, 148(4):2121-2133
[13]Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations[J]. Planta. 2008, 227(6):1343-1349
[14]Piisil? M, Keceli M A, Brader G, Jakobson L, Joesaar I, Sipari N, Kollist H,Palva E T, Kariola T. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana[J]. BMC Plant Biology. 2015, 15: 53
[15]Karolina S, Nausica? L, Yafei Z, Lore E, Jonas V H, Bassam A A, Van Damme E J M. Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection[J]. BMC Plant Biology. 2016, 16: 213
[16]Guo MY, Su N, Zheng J, HuaiJ L, Wu G H,Zhao J F, He J G, Tang D Z, Yang S H, Wang G Y. An F-box gene, CPR30, function as a negative regulator of the defense response in Arabidopsis[J]. Plant Journal. 2009, 60:757-770
[17]Kim H S, Delaney T P. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance[J]. Plant Cell. 2002, 14:1469-1482
[18]Maldonado-Calderón M T, Sepúlveda-García E, Rocha-Sosa M. Characterization of novel F-box proteins in plants induced by biotic and abiotic stress[J]. Plant Sciences. 2012, 185-186: 208-217
[19]Curtis R H, Pankaj, Stephen J P, Johnathan N. The Arabidopsis F-box/Kelch-repeat protein At2g44130 is upregulated in giant cells and promotes nematode susceptibility[J]. Molecular Plant Microbe Interaction. 2013, 26(1): 36-43
[20]Imaizumi T, Schultz T F, Harmon F Q,Lindsey A H, Steve A K. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis[J]. Science. 2005, 309: 293-297
[21]Imaizumi T,Tran H G, Swartz T E, Briggs W R, Kay S A. FKF1isessentialfor photoperiodic-specific light signalling in Arabidopsis[J]. Nature. 2003, 426: 302-306
[22]Kolmer J A. Genetics of resistance to wheat leaf rust[J]. Annual Review of Phytopathology. 1996, 34: 435-455
[23]Brenchley R, Spannagl M, Pfeifer M, Barker G L, D''Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, BancroftI, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W R, Hall A, Mayer K F, Edwards K J, Bevan M W, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing[J]. Nature. 2012, 491(7426): 705-710
[24]Appels R, Eversole K, Stein N. Shifting the limits in wheat research and breeding using a fully annotated Reference genome[J]. Science,2018, 361(6403):eaar7191
[25]Kuroda H, Takahashi N, Shimada H, Seki M, Shinozaki K, Matsui M. Classification and expression analysis of Arabidopsis F-box-containing protein genes[J]. Plant cell physiology. 2002, 43(10): 1073-1085
[26]Li YZ, Jia FJ, Yu YL, Lu L, Huang J G, Yang G D, Wu C G, Zheng C C. The SCF E3 Ligase AtPP2-B11 plays a negative role in response to drought stress in Arabidopsis[J]. Plant Molecular Biology Reporter. 2014, 32 (5): 943-956
[27]Hu TZ, Wang WP, Cao KM, Wang X P. OsCOI1, a putative COI1 in rice, show MeJA and ABA dependent expression[J]. Progress In Biochemistry and Biophysics, 2006, 33(4): 388-393
[28]刘卫霞, 彭小忠, 袁建月, 强伯勤. SCF(Skp1-Cul1-F-box蛋白)复合物及其在细胞周期中的作用[J]. 中国生物工程杂志. 2002, 22(3): 1-3Liu WX, Peng XZ, Yuan JY, Qiang B Q. SCF (Skp1-Cul1-F-box protein) complex and its function in cell cycle[J]. Journal of Chinese Biotechnology. 2002, 22(3): 1-3
[29]Fu X D, Richards D E, Fleck B, Xie D X, Burton N, Harberd N P. The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCF<sup>SLY1</sup> E3 ubiquitin ligase for DELLA protein substrates[J]. The Plant Cell. 2004, 16:1406-1418
[30]程笑笑, 冯自力, 冯鸿杰, 赵丽红, 师勇强, 李志芳, 朱荷琴. 真菌源几丁质酶在植物抗真菌病害中的应用[J]. 植物保护. 2017, 03: 0529-1542Cheng X X, Feng Z L, Feng H J, Zhao L H, Shi Y Q, Li Z F, Zhu H Q. Applications of fungal chitinase in the fungal disease-resistant plants[J]. Plant Protection. 2017, 43(3):29-35
[31]Toyoda H, Matsuds Y, Yamaga T, Ikeda S, Morita M, Tamai T, Ouchi S. Suppression of the powdery mildew pathogen by chitinase microinjected into barley coleoptile epidermal cells[J]. Plant cell reports. 1991, 10(05):217-220
[32]巩凯玲, 陈双慧, 纪晓晨, 林怡容, 张荃. 植物几丁质酶的研究进展[J]. 分子植物育种. 2018, 1672-416XGong K L, Chen S H, Ji X C, Lin Y R, Zhang Q. Advances in research of plant chitinases[J]. Molecular Plant Breeding. 2018, 1672-416X
[33]Melchers L S. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity[J]. Plant Journal, 1994, 4(5): 469-480
PDF(11514 KB)

文章所在专题

水稻

Accesses

Citation

Detail

段落导航
相关文章

/