蓖麻GRAS转录因子家族的全基因组分析及逆境胁迫响应

韩雯毓,李国瑞,风 兰,李孟建,白英俊,孙佳欣,闫星伊,王双,赵秀萍,陈永胜

植物遗传资源学报. 2020, 21(1): 252-259

PDF(1365 KB)
PDF(1365 KB)
植物遗传资源学报 ›› 2020, Vol. 21 ›› Issue (1) : 252-259. DOI: 10.13430/j.cnki.jpgr.20190521002
研究简报

蓖麻GRAS转录因子家族的全基因组分析及逆境胁迫响应

  • 韩雯毓, 李国瑞, 风 兰, 李孟建, 白英俊, 孙佳欣, 闫星伊, 王双, 赵秀萍, 陈永胜
作者信息 +

Genome-wide Analysis of GRAS Transcription Factors in Ricinus communis and Response to Abiotic Stresses

  • HAN Wen-yu, LI Guo-rui, FENG Lan, LI Meng-jian, BAI Ying-jun, SUN Jia-xin, YAN Xing-yi, WANG Shuang, ZHAO Xiu-ping, CHEN Yong-sheng
Author information +
History +

摘要

GRAS 转录因子在植物生长发育及逆境胁迫等多个生理生化途径中具有重要作用。本研究从蓖麻基因组中鉴定出48 个 GRAS 转录因子,对其理化性质、系统发育模式、基因结构与保守基序进行了分析。结果表明,蓖麻 GRAS 基因编码的蛋白全部为亲水蛋白,其中酸性蛋白质约占 94 %,等电点在 4.82-10.21 之间,相对分子量介于 17305.2-90986.6 之间。GRAS转录因子家族成员分为 11 个亚家族,同一亚家族成员具有相似的基因结构与保守基序。利用 RT-qPCR 技术检测了根、茎、叶不同组织中的五个基因在干旱与盐胁迫下的表达情况,结果表明,RcGRASs 在不同组织中的表达具有特异性,干旱与盐胁迫诱导 RcGRAS14、RcGRAS21、RcGRAS35 的表达,抑制 RcGRAS1、RcGRAS10 的表达。本研究为进一步研究 GRAS 转录因子在非生物胁迫中的功能提供参考。

Abstract

GRAS transcription factors play important roles in many physiological and biochemical pathways involved in plant growth and development and stress responses. 48 GRAS transcription factors were identified in the genome of Ricinus communis L., and their physical and chemical properties, phylogenetic patterns, gene structure, and conserved motifs were analyzed. The proteins encoded by GRAS genes of castor are all hydrophilic, with acidic proteins accounting for about 94%, isoelectric points between 4.82-10.21, and relative molecular weights between 17305.2-90986.6. The GRAS transcription factors are divided into 11 subfamilies,and members of the same subfamily have similar gene structures and conserved motifs. RT-qPCR was used to detect the expression of five genes in roots, stems and leaves under drought and salt stresses. The results showed that the expression of RcGRASs in different tissues was specific, and drought and salt stresses induced the expression of RcGRAS14、RcGRAS21 and RcGRAS35 but inhibited the expression of RcGRAS1 and RcGRAS10. This study provides a reference for further study of the functionon of GRAS transcription factors in abiotic stresses.

关键词

蓖麻;GRAS转录因子;生物信息学分析;逆境胁迫

Key words

castor (Ricinus communis L.);GRAS transcription factors;bioinformatic analysis;abiotic stresses

引用本文

导出引用
韩雯毓,李国瑞,风 兰,李孟建,白英俊,孙佳欣,闫星伊,王双,赵秀萍,陈永胜. 蓖麻GRAS转录因子家族的全基因组分析及逆境胁迫响应. 植物遗传资源学报. 2020, 21(1): 252-259 https://doi.org/10.13430/j.cnki.jpgr.20190521002
HAN Wen-yu,LI Guo-rui,FENG Lan,LI Meng-jian,BAI Ying-jun,SUN Jia-xin,YAN Xing-yi,WANG Shuang,ZHAO Xiu-ping and CHEN Yong-sheng. Genome-wide Analysis of GRAS Transcription Factors in Ricinus communis and Response to Abiotic Stresses. Journal of Plant Genetic Resources. 2020, 21(1): 252-259 https://doi.org/10.13430/j.cnki.jpgr.20190521002

参考文献

[1]Zhang D, Iyer L M, Aravind L. Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms. Bioinformatics, 2012, 28(19): 2407
[2]Pysh L D, Wysockadilier J W, Camilleri C, Bouchez D, Benfey P N. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant Journal for Cell & Molecular Biology, 2010, 18(1): 111-119
[3]Sun X, Xue B, Jones W T, Rikkerink E, Dunker A K, Uversky V N. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. Plant Molecular Biology, 2011, 77(3): 205-223
[4]Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta, 2004, 218(5):683-692
[5]Chen J, Cheng T, Wang P, Tian L, Wang J P, Luo Y M, Wang J J, Yang L M, Shi J S. Genome-wide bioinformatics analysis of DELLA-family proteins from plants. Plant Omics, 2013, 6(3): 201-207
[6]Tian C, Wan P, Sun S, Li J, Chen M. Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis. Plant Molecular Biology, 2004, 54(4): 519-532
[7]Song X M, Ying L, Xi L H. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapassp. pekinensis). BMC Genomics, 2014, 103(1): 135-46
[8]Guang W, Xian Z, Xia K, Tang N, Li Z. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biology, 2015, 15(1): 209
[9]Torres-galea P, Hirtreitre B, Bollec C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction. Plant Physiology, 2013, 161(1): 291-304
[10]Heo J O, Chang K S, Kim I A, Lee M H, Lee S A, Song S K, Lee M M, Lim J. Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the\r, Arabidopsis\r, root. Proceedings of the National Academy of Sciences, 2011, 108(5): 2166-2171
[11]Schumacher K,Schmitt T,Rossberg M, Schmitz G, Theres K. 1999. The Lateral suppressor(Ls)gene of tomato encodes a new member of the VHIID protein family. Proceedings of the National Academy of Sciences. 1999, 96(1): 290–295.
[12]Chan A P, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-berhan A, Jones K M, Redman J, Chen G, Cahoon E B, Gedil M, Stanke M, Haas B J, Wortman J R, Fraser-liggett C M, Ravel J, Rabinowicz P D. Draft genome sequence of the oilseed species Ricinuscommunis. Nature Biotechnol, 2010, 28(9): 951-956
[13]杨丽凤,常如慧,李国瑞,狄建军,徐雅楠,梁塔娜,张艳欣,李丽丽,孙洪玲,隋久香,黄凤兰.喷施草铵膦与草甘膦对蓖麻叶片生理生化的影响研究. 内蒙古民族大学学报(自然科学版), 2018, 33(05): 411-416
Yang L F, Chang R H, Li G R, Di J J, Xu Y N, Liang T N, Zhang Y X, Li L L, Sun H L, Sui J X, Huang F L. Effects of Spraying Glyphosate and Glufosinate on Physiological and Biochemical Characteristics of Castor Leaves. JOURNAL OF INNNER MONGOLIA UNIVERSITY FOR NATIONALITIES, 2018, 33(05): 411-416
[14]王兆华.蓖麻的用途与栽培技术. 新疆农业科学, 2000, 5:223-225
Wang Z H. Use and cultivation techniques of Castor. Xinjiang Agricultural Sciences,2000, 5: 223-225
[15]罗贵明,张勃,鲁振江.矮化蓖麻效益显著. 农村科技, 2005, (5):9-9
Luo M G, Zhang B, Lu Z J. Dwarf Castor benefits significantly. Rural Science & Technology, 2005, (5): 9-9
[16]Zimmerman L H.The relationship of a Dwarf-Internode gene to several important agronomic characters in Castor beans. Agron J, 1957, 49:251-254
[17]姚远,李凤山,陈永胜,李金琴,黄凤兰,王永佳.国内外蓖麻研究进展.内蒙古民族大学学报(自然汉文版), 2009, 24(2):172-175
Yao Y, Li F S, Chen YS, Li J Q, Huang F L, Wang Y J. Research progress on Castor. JOURNAL OF INNNER MONGOLIA UNIVERSITY FOR NATIONALITIES, 2009, 24(2):172-175
[18]Rbert D F, Alex B, Jody C, Penelope C, Ruth Y E, Sean R E, Andreas H, Kikstie H, Liisa H, Jaina M, Erik L L S, John T, Marco P. Pfam: the protein families database. Nucleic acids research, 2014, 42(Database issue): D222-30
[19]Letunic I, Doerks T, Bork P. Smart 7: Recent updates to the protein domain annotation resource. Nucleic Acids Research, 2012, 40(Database issue), 302-5.
[20]Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel R D, Bairoch A. ExPASy: the proteomics server for indepth protein knowledge and analysis. Nucleic Acids Resarch, 2003, 31(13): 3784-3788
[21]Sievers F, Wilm A, Dineen D, Gibson T J, Karplus K, Li W, Lopez R, Mcwilliam H, Rennert M, Soding J, ThompsonH J D, Higgings D G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 2011, 7
[22]Liu X, Widmer A. Genome-wide Comparative Analysis of the GRAS Gene Family inPopulus, Arabidopsisand Rice. Plant Molecular Biology Reporter, 2014, 32(6): 1129-1145
[23]Li X, Qiao Q, Fu Z , Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luok D, Han B, Li J. Control of tillering in rice. Nature (London), 2003, 422(6932): 618-621
[24]Sturman J. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes andDevelopment, 2002, 16(17): 2213-2218
[25]殷龙飞,王朝阳,吴忠义,张中保,于荣.玉米ZmGRAS31基因的克隆及功能研究.作物学报:1-11[2019-05-21].http://kns.cnki.net/kcms/detail/11.1809.S.20190321.1508.006
Yin L F, Wang Z Y, Wu Z Y, Zhang Z B, Yu R. Cloning and Functional Analysis of ZmGRAS31 Gene in Maize. Acta Agronomica Sinica:1-11[2019-05-21].http://kns.cnki.net/kcms/detail/11.1809.S.20190321.1508.006
[26]Wang J, Aandersson-gunners S, Gaboreanu I, Hertzberg M, Tucker M R, Zheng B, Lesniewaka J, Mellerowicz E J, Laux T, Sandber G, Jones B. Reduced expression of the SHORT-ROOT gene increases the rates of growth and development in hybrid poplar and Arabidopsis. PLoS One, 2011, 6(12): e28878-
PDF(1365 KB)

20

Accesses

0

Citation

Detail

段落导航
相关文章

/