玉米叶色突变体遗传分析及基因定位

王飞,段世名,李彤,王荣纳,陶勇生

植物遗传资源学报. 2018, 19(6): 1205-1209

PDF(1215 KB)
PDF(1215 KB)
植物遗传资源学报 ›› 2018, Vol. 19 ›› Issue (6) : 1205-1209. DOI: 10.13430/j.cnki.jpgr.20180326001
论文

玉米叶色突变体遗传分析及基因定位

  • 王飞,段世名,李彤,王荣纳,陶勇生
作者信息 +

Fine Mapping and Candidate Gene Analysis of Leaf Color Mutant in Maize

  • WANG Fei,DUAN Shi-ming,LI Tong,WANG Rong-na and TAO Yong-sheng
Author information +
History +

摘要

玉米叶色与叶绿体及结构相关,调控光合产量,因而对调控叶色基因的遗传研究或克隆将有助于玉米光合产量的遗传改良和植物光合作用理论机制的解析。本研究以玉米W22::Mu介导的以综31为遗传背景的导入系群体为材料,获得了细胞核单隐性基因控制、叶绿体结构和数目异常、色素缺失和PSII显著降低的叶色突变体。使用覆盖B73基因组的SSR标记将突变位点定位于约2.95 Mb区间(bnlg1863-umc2075)。基于区段标记开发和1200单株分离群体将突变位点精细定位于约900 Kb区间(B73 RefGen_V4;S1-S7区间),经区段内基因表达和功能分析获得了候选基因Zm00001d010000,该基因编码硫氧还蛋白,与突变体表型形成相关。该研究将为光合产量的遗传改良和植物光合作用理论机制解析提供重要的基因或标记资源。

Abstract

The leaf color of maize is associated to the content and structure of chloroplast, which is the compartment and of importance in photosynthesis. Genetic analysis and isolation of genes that control the leaf color will provide insights in the genetic improvement for photosynthetic yield and exploration of the theoretical mechanism. In this study, by screening for maize mutants generated by W22::Mu in introgression lines with genetic background of Z31, we obtained a leaf color mutant with the abnormal chloroplast, lack of pigment and the reduction of PSII, which was controlled by a single recessive locus. By the low-resolution genetic mapping using the SSR markers, this mutation locus was mapped to a 2.95 Mb interval (B73 RefGen_V4; bnlg1863-umc2075). Furthermore, this locus was finely mapped to a ~900 Kb interval (B73 RefGen_V4; S1- S7) by 1200 individuals plants from BC6F2and developed SSR. Taking advantage of gene annotation and expression analysis, we identified a strong candidate gene Zm00001d010000 that encodes forthioredoxin. Thus, the study could provide genetic material and the selection markers that become valuable in theoretical and applied research for increasing photosynthetic yield.

关键词

玉米 / 叶色 / 突变体 / 基因定位

Key words

maize / leaf color / mutant / gene mapping

引用本文

导出引用
王飞,段世名,李彤,王荣纳,陶勇生. 玉米叶色突变体遗传分析及基因定位. 植物遗传资源学报. 2018, 19(6): 1205-1209 https://doi.org/10.13430/j.cnki.jpgr.20180326001
WANG Fei,DUAN Shi-ming,LI Tong,WANG Rong-na and TAO Yong-sheng. Fine Mapping and Candidate Gene Analysis of Leaf Color Mutant in Maize. Journal of Plant Genetic Resources. 2018, 19(6): 1205-1209 https://doi.org/10.13430/j.cnki.jpgr.20180326001

参考文献

[1]Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith A G, Tanaka A, Terry M J. The cell biology of tetrapyrroles: a life and death struggle. Trends in Plant Science, 2010, 15(9): 488-498
[2]刘贞琦, 刘振业, 马达鹏, 曾淑芬. 水稻叶绿素含量及其与光合速率关系的研究. 作物学报, 1984, 10 (1): 57-64
[3]Franco A C, Matsubara S, Orthen B. Photoinhibition, carotenoid composition and the co-regulation of photochemical and non-photochemical quenching in neotropical savanna trees. Tree physiology, 2007, 27(5): 717-725
[4]吴军, 陈佳颖, 赵剑, 林冬枝, 董彦君. 2个水稻温敏感叶色突变体的光合特性研究. 中国农学通报, 2012, 28(21): 16-21
[5]徐培洲, 李云, 袁 澍, 张红宇, 彭海, 林宏辉, 汪旭东, 吴先军. 叶绿素缺乏水稻突变体中光系统蛋白和叶绿素合成特性的研究. 中国农业科学, 2006, 39(7): 1299-1305
[6]史典义, 刘忠香, 金危危. 植物叶绿素合成、分解代谢及信号调控. 遗传, 2009, 31(7): 698-704
[7]杨伟峰. Mutator转座子介导的玉米叶色突变体侧翼序列的克隆及遗传分析. 保定: 河北农业大学, 2012
[8]Xing S, Miao J, Li S, Qin G, Tang S, Li H, Gu H, Qu L J. Disruption of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis. Cell Research, 2010, 20(6): 688-700
[9]Baishnab C. Tripathy, Gopal K. Pattanayak. Chlorophyll biosynthesis in higher plants. Advances in Photosynthesis and Respiration, 2012, 34: 63-94
[10]Bollivar D W. Recent advances in chlorophyll biosynthesis. Photosynthesis Research, 2006, 90(2): 173-194
[11]王平荣, 张帆涛, 高家旭, 孙小秋, 邓晓建. 高等植物叶绿素生物合成的研究进展. 西北植物学报, 2009, 29(3): 0629- 0636
[12]Yang W F, Tian Y H, Wang T T, Wang R N, Tao Y S. Isolating and confirming the MuDR-inserted flanking sequences of maize. Cytology Genetics, 2017, 51(2): 142-148
[13]Zavaleta-Mancera H A, Ortega-Ramíreza L G, Jiménez-Garcíaa L F, Sánchez-Viverosa G, Alarcóna A. Effect of arsenic on chloroplast ultrastructure in Azolla filliculoides Lam. Microscopy and Microanalysis, 2016, 22(Suppl 3): 1206-1207
[14]Arnon D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiology, 1949, 24(1): 1-15
[15]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4325
[16]Santos F R, Pena S D, Epplen J T. Genetic and population study of a Y-linked tetranucleotide repeat DNA polymorphism with a simple non-isotopic technique. Human Genetics, 1993, 90(6): 655-656
[17]Kanto T, Takehara T, Katayama K, Ito A, Mochizuki K, Kuzushita N, Tatsumi T, Sasaki Y, Kasahara A, Hayashi N. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 2001, 11(8): 1441-1452
[18]Wang L, Zhang Z, Wei L, Zhang D F, Teng F, Tao Y S, Zheng Y L. The residual background genome from a donor within an improved line selected by marker-assisted selection: impact on phenotype and combining ability. Plant breeding, 2009, 128(5): 429-435
[19]Lander E S, Botslein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121(1): 185-199
[20]詹晶晶, 邢文慧, 田玉焕, 范子洋, 陶勇生. 基于掖478导入系的玉米百粒重QTL鉴定.S植物遗传资源学报,S2015, 16(5): 955-960
[21]Zhan J J, Wang F, Xing W, Liu J, Fan Z, Tao Y S. Fine mapping and candidate gene prediction of a major QTL for kernel number per ear in maize. Molecular Breeding, 2018, 38(3): 27. https://doi.org/10.1007/s11032-018-0787-0
[22]Schürmann P, Buchanan B B. The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxidants Redox Signaling, 2008, 10(7): 1235-1274
[23]Balmer Y, Koller A, Del V G, Manieri W, Schürmann P, Buchanan B B. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. PNAS, 2003, 100(1): 370-375
[24]Luo T, Fan T, Liu Y, Rothbart M, Yu J, Zhou S, Grimm B, Luo M. Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiology, 2012, 159(1): 118-130
[25]Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustün S, Melzer M, Petersen K, Lein W, B?rnke F. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell, 2010, 22(5): 1498-1515
PDF(1215 KB)

文章所在专题

资源与环境

Accesses

Citation

Detail

段落导航
相关文章

/