利用DH和IF2群体检测油菜产量QTL

余华胜,张尧锋,钱伟,贺亚军,傅鹰

植物遗传资源学报. 2021, 22(6): 1716-1722

PDF(10912 KB)
PDF(10912 KB)
植物遗传资源学报 ›› 2021, Vol. 22 ›› Issue (6) : 1716-1722. DOI: 10.13430/j.cnki.jpgr. 20210408001
论文

利用DH和IF2群体检测油菜产量QTL

  • 余华胜1, 张尧锋1, 钱伟2, 贺亚军2, 傅鹰1
作者信息 +

QTL Mapping for Yield Traits in Brassica napus L. Using DH and Immortalized F2 Populations

  • YU Hua-sheng1, ZHANG Yao-feng1, QIAN Wei2, HE Ya-jun2, FU Ying1
Author information +
History +

摘要

油菜产量性状是多基因控制的复杂数量性状,也是油菜遗传改良最重要的目标性状。本研究以欧洲冬性油菜品种‘Express’和中国半冬性油菜品系‘SWU07’构建了包含261个株系的双单倍体(doubled haploid, DH)群体和234个株系的永久F2(immortalized F2, IF2)群体,并在中国和德国不同的生态环境和年份环境条件下检测油菜产量性状QTL。结果显示,DH群体在中国2年环境下和德国1年环境下共检测出18个QTL,在IF2群体2年环境下共检测出15个QTL,分布在13个连锁群上,分别为A1、A2、A3.1、A3.2、A7.1、A7.2、A9、C1、C3、C4、C5、C8和C9连锁群,揭示2.27%~16.93%的表型变异。其中,位于A2、A3.1、A7.1、A9和C5连锁群上的6个位点可以在不同环境或者不同群体中被重复检测到,代表较为可信的产量性状连锁位点。本研究鉴定获得的这些QTL将为油菜产量性状的遗传改良提供有用信息。

Abstract

Seed yieldis the most important trait for genetic improvement in rapeseed, and it is controlled by quantitative loci/genes. In the present study, QTL mapping for seed yield in rapeseed were conducted at multiple environmental conditions, using a doubled haploid (DH) population derived from a cross between a winter-type cultivar ‘EXPRESS’ and semi-winter-type line ‘SWU07’, and an immortalized F2 population generated by randomly intermating among DH lines. A total of 18 putative QTL were identified in China across two years and 15 putative QTLs were identified in one year in Germany environment. These loci were located on 13 linkage groups including A1, A2, A3.1, A3.2, A7.1, A7.2, A9, C1, C3, C4, C5, C8 and C9, respectively, each of which could explain phenotypic variation ranging from 2.27% to 16.93%. Out of the identified QTL, six loci on linkage groups A2, A3.1, A7.1, A9 and C5 have been detectedacross environments or populations, thus becoming of interest in controlling seed yield in rapeseed. Collectively, these QTLs provided useful information for future improving seed yield in rapeseed breeding.

关键词

甘蓝型油菜;产量;数量性状位点

Key words

Brassica napus / Seed yield / QTL

引用本文

导出引用
余华胜,张尧锋,钱伟,贺亚军,傅鹰. 利用DH和IF2群体检测油菜产量QTL. 植物遗传资源学报. 2021, 22(6): 1716-1722 https://doi.org/10.13430/j.cnki.jpgr. 20210408001
YU Hua-sheng,ZHANG Yao-feng,QIAN Wei,HE Ya-jun and FU Ying. QTL Mapping for Yield Traits in Brassica napus L. Using DH and Immortalized F2 Populations. Journal of Plant Genetic Resources. 2021, 22(6): 1716-1722 https://doi.org/10.13430/j.cnki.jpgr. 20210408001

参考文献

[1] 傅廷栋. 中国油菜生产和品种改良的现状与前景. 安徽农学通报,2000,6: 2-9.Fu T D. Present situation and prospect of rapeseed production and variety improvement in China. Anhui Agricultural Science Bulletin, 2000, 6: 2-9.
[2] 俞琦英,刘凤兰,张冬青. 2000-2009年中国冬油菜区试品种品质及产量性状的演变. 中国农学通报,2010,26(16): 119-123.Yu Q Y, Liu F L, Zhang D Q. The evolution analysis of quality and yield characters of new rapeseed lines tested innational winter rapeseed regional experiment in recent decade in China. Chinese Agricultural Science Bulletin, 2010,26(16): 119-123.
[3] 傅廷栋. 油菜杂种优势研究利用的现状与思考. 中国油料作物学报(增刊), 2008, 30: 1-5.Fu T D. Present situation of the utilization of heterosis in rapeseed. Chinese Journal of OilCrop Sciences (Supplement), 2008, 30: 1-5.
[4] Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q, M A Saghai Maroof. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences, 1997, 94(17): 9226-9231.
[5] Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162(4): 1885-1895.
[6] Maccaferri M, Sanguineti M C, Corneti S, Ortega J L A, Salem M B, Bort J,DeAmbrogio E, Moral L F G, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj I, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics, 2008, 178(1): 489-511.
[7] 高必军, 李平, 江洪. 甘蓝型油菜若干农艺性状与单株产量的关系分析. 生物数学学报, 2007, 22 (1): 137-144.Gao B J, Li P, Jiang H. Relation analysis of several agronomic traits and yield per plant in Brassica napus L. Journal of Biomathematics, 2007, 22 (1): 137-144.
[8] 吴建忠.甘蓝型油菜结实相关性状分析及QTL定位. 武汉:华中农业大学, 2010.Wu J Z. Analysis and QTL mapping of seed-setting related traits in Brassica napus L.Wuhan: HuaZhong agricultural university, 2010
[9] Gül M K, Becker H C, Ecke W. QTL mapping and analysis of QTL× nitrogen interactions for protein and oil contents in Brassica napus L[C]//Proceedings of the 11th international rapeseed congress, Copenhagen, Denmark. 2003, 1: 91-93.
[10] 张书芬, 傅廷栋, 朱家成, 王建平, 文雁成, 马朝芝. 甘蓝型油菜产量及其构成因素的QTL定位与分析. 作物学报, 2006, 32 (8): l135-1142.Zhang S F, Fu T D, Zhu J C, Wang J P, Wen Y C, Ma C Z. QTL Mapping and Epistasis Analysis for Yield and Its Components inBrassica napus L. Acta Agronomica Sinica, 2006, 32 (8): l135-1142.
[11] Zhang P, Allen W B, Nagasawa N, Ching A S, Heppard E P, Li H, Hao X, Li X, Yang X,Yan J, Nagato Y, Sakai H, Shen B, Li J. A transposable element insertion within ZmGE2 gene is associated with increase in embryo to endosperm ratio in maize. Theoretical and Applied Genetics, 2012, 125(7): 1463-1471.
[12] Basunanda P, Radoev M, Ecke W, Friedt W, Becker H C, Snowdon R J. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theoretical and applied genetics, 2010, 120(2): 271-281.
[13] Fan C, Cai G, Qin J, Li Q, Yang M, Wu J, Fu T, Liu K, Zhou Y. Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theoretical and applied genetics, 2010, 121(7): 1289-1301.
[14] Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y. Genetic dissection of plant architecture and yield-related traits in Brassica napus. Scientific Reports, 2016, 6(1): 21625.
[15] Cai D , Xiao Y , Yang W , Ye W, Wang B, Younas M, Wu J, Liu K. Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theoretical Applied Genetics, 2014, 127(1): 85-96.
[16] Wei C , Yan Z , Liu X , Chen B, Tu J, Fu T. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F(2) populations. Theoretical Applied Genetics, 2007, 115(6):849-858.
[17] Chao H , N Raboanatahiry, Wang X , Zhao W, Chen L, Guo L, Li B, Hou D, Pu S, Zhang L, Wang H, Wang B, Li M. Genetic dissection of harvest index and related traits through genome-wide quantitative trait locus mapping in Brassica napus L. Breeding Science, 2019, 69(1): 104-116
[18] Raboanatahiry N, Chao H, Dalin H, Pu S, Yan W, Yu L, Wang B, Li M. QTL Alignment for Seed Yield and Yield Related Traits in Brassica napus. Frontiers in plant science, 2018, 9:1127
[19] Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L. QTL for Yield Traits and Their Association with Functional Genes in Response to Phosphorus Deficiency in Brassica napus. Plos One, 2013, 8(1): e54559.
[20] Li F, Ma C, Chen Q, Liu T, Shen J, Tu J, Xing Y, Fu T. Comparative mapping reveals similar linkage of functional genes to QTL of yield-related traits between Brassica napus and Oryza sativa, Journal of Genetics. 2012, 91(2):163-70.
[21] Zhao W , Wang X , Hao W , Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M. Genome-Wide Identification of QTL for Seed Yield and Yield-Related Traits and Construction of a High-Density Consensus Map for QTL Comparison in Brassica napus. Frontiers in Plant Science, 2016, 7(17):17.
[22] SAS and Institute. SAS/STAT user’s guide, version 8. SAS Institute, Cary, 2000.
[23] Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J.Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009, 182(3): 851-861.
[24] Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences, 1993, 90(23): 10972-10976.
[25] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138(3): 963-971.
[26] Shi J, Li R, Zou J, Long Y, Meng J. A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PloS one, 2011, 6(7): e21645.
[27] Zhao J, Huang J, Chen F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J. Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theoretical and Applied Genetics, 2012, 124(2): 407-421.
[28] Yang P, Shu C, Chen L, et al. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.)[J]. Theoretical and Applied Genetics, 2012, 125(2): 285-296.
[29] Kaur S, Cogan N O I, Ye G, Baillie R C, Hand M L, Ling A E, McGearey A K, Kaur J, Hopkins C J, Todorovic M, Mountford H, Edwards D, Batley J, Burton W, Salisbury P, Gororo N, Marcroft S, Kearney G, Smith K F, Forster J W, Spangenberg G C. Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theoretical and applied genetics, 2009, 120(1): 71-83.
[30] Lou P, Zhao J, Kim JS, Shen S, Del Carpio DP, Song X, Jin M, Vreugdenhil D, Wang X, Koornneef M, Bonnema G. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. Journal of Experimental Botany, 2007, 58(14): 4005-4016.
PDF(10912 KB)

31

Accesses

0

Citation

Detail

段落导航
相关文章

/