Hot Article
Please wait a minute...
  • Select all
    |
  • CHEN Feng, SUN Chuanheng, XING Bin, LUO Na, LIU Haishen
    Smart Agriculture. 2022, 4(4): 126-137. https://doi.org/10.12133/j.smartag.SA202206006

    As an emerging concept, metaverse has attracted extensive attention from industry, academia and scientific research field. The combination of agriculture and metaverse will greatly promote the development of agricultural informatization and agricultural intelligence, provide new impetus for the transformation and upgrading of agricultural intelligence. Firstly, to expound feasibility of the application research of metaverse in agriculture, the basic principle and key technologies of agriculture metaverse were briefly described, such as blockchain, non-fungible token, 5G/6G, artificial intelligence, Internet of Things, 3D reconstruction, cloud computing, edge computing, augmented reality, virtual reality, mixed reality, brain computer interface, digital twins and parallel system. Then, the main scenarios of three agricultural applications of metaverse in the fields of virtual farm, agricultural teaching system and agricultural product traceability system were discussed. Among them, virtual farm is one of the most important applications of agricultural metaverse. Agricultural metaverse can help the growth of crops and the raising of livestock and poultry in the field of agricultural production, provide a three-dimensional and visual virtual leisure agricultural experience, provide virtual characters in the field of agricultural product promotion. The agricultural metaverse teaching system can provide virtual agricultural teaching similar to natural scenes, save training time and improve training efficiency by means of fragmentation. Traceability of agricultural products can let consumers know the production information of agricultural products and feel more confident about enterprises and products. Finally, the challenges in the development of agricultural metaverse were summarized in the aspects of difficulties in establishing agricultural metaverse system, weak communication foundation of agricultural metaverse, immature agricultural metaverse hardware equipment and uncertain agricultural meta universe operation, and the future development directions of agricultural metaverse were prospected. In the future, researches on the application of metaverse, agricultural growth mechanism, and low power wireless communication technologies are suggested to be carried out. A rural broadband network covering households can be established. The industrialization application of agricultural meta universe can be promoted. This review can provide theoretical references and technical supports for the development of metaverse in the field of agriculture.

  • ZHAO Ruixue, YANG Chenxue, ZHENG Jianhua, LI Jiao, WANG Jian
    Smart Agriculture. 2022, 4(4): 105-125. https://doi.org/10.12133/j.smartag.SA202207009

    The wide application of advanced information technologies such as big data, Internet of Things and artificial intelligence in agriculture has promoted the modernization of agriculture in rural areas and the development of smart agriculture. This trend has also led to the boost of demands for technology and knowledge from a large amount of agricultural business entities. Faced with problems such as dispersiveness of knowledges, hysteric knowledge update, inadequate agricultural information service and prominent contradiction between supply and demand of knowledge, the agricultural knowledge service has become an important engine for the transformation, upgrading and high-quality development of agriculture. To better facilitate the agriculture modernization in China, the research and application perspectives of agricultural knowledge services were summarized and analyzed. According to the whole life cycle of agricultural data, based on the whole agricultural industry chain, a systematic framework for the construction of agricultural intelligent knowledge service systems towards the requirement of agricultural business entities was proposed. Three layers of techniques in necessity were designed, ranging from AIoT-based agricultural situation perception to big data aggregation and governance, and from agricultural knowledge organization to computation/mining based on knowledge graph and then to multi-scenario-based agricultural intelligent knowledge service. A wide range of key technologies with comprehensive discussion on their applications in agricultural intelligent knowledge service were summarized, including the aerial and ground integrated Artificial Intelligence & Internet-of-Things (AIoT) full-dimensional of agricultural condition perception, multi-source heterogeneous agricultural big data aggregation/governance, knowledge modeling, knowledge extraction, knowledge fusion, knowledge reasoning, cross-media retrieval, intelligent question answering, personalized recommendation, decision support. At the end, the future development trends and countermeasures were discussed, from the aspects of agricultural data acquisition, model construction, knowledge organization, intelligent knowledge service technology and application promotion. It can be concluded that the agricultural intelligent knowledge service is the key to resolve the contradiction between supply and demand of agricultural knowledge service, can provide support in the realization of the advance from agricultural cross-media data analytics to knowledge reasoning, and promote the upgrade of agricultural knowledge service to be more personalized, more precise and more intelligent. Agricultural knowledge service is also an important support for agricultural science and technologies to be more self-reliance, modernized, and facilitates substantial development and upgrading of them in a more effective manner.

  • LI Yang, PENG Yankun, LYU Decai, LI Yongyu, LIU Le, ZHU Yujie
    Smart Agriculture. 2022, 4(3): 132-142. https://doi.org/10.12133/j.smartag.SA202206012

    The detecting and grading of the internal quality of apples is an effective means to increase the added value of apples, protect the health of residents, meet consumer demand and improve market competitiveness. Therefore, an apple internal quality detecting module and a grading module were developed in this research to constitute a movable apple internal quality orchard origin grading system, which could realize the detection of apple sugar content and apple moldy core in orchard origin and grading according to the set grading standard. Based on this system, a multiplicative effect elimination (MEE) based spectral correction method was proposed to eliminate the multiplicative effect caused by the differences in physical properties of apples and improve the internal quality detection accuracy. The method assumed that the multiplication coefficient in the spectrum was closely related to the spectral data at a certain wavelength, and divided the original spectrum by the data at this wavelength point to achieve the elimination of the multiplicative scattering effect of the spectrum. It also combined the idea of least-squares loss function to set the loss function to solve for the optimal multiplication coefficient point. To verify the validity of the method, after pre-processing the apple spectra with multiple scattering correction (MSC), standard normal variate transform (SNV), and MEE algorithms, the partial least squares regression (PLSR) prediction models for apple sugar content and partial least squares-discriminant analysis (PLS-DA) models for apple moldy core were developed, respectively. The results showed that the MEE algorithm had the best results compared to the MSC and SNV algorithms. The correlation coefficient of correction set (Rc), root mean square error of correction set (RMSEC), the correlation coefficient of prediction set (Rp), and root mean square error of prediction set (RMSEP) for sugar content were 0.959, 0.430%, 0.929, and 0.592%, respectively; the sensitivity, specificity, and accuracy of correction set and prediction set for moldy core were 98.33%, 96.67%, 97.50%, 100.00%, 90.00%, and 95.00%, respectively. The best prediction model established was imported into the system for grading tests, and the results showed that the grading correct rate of the system was 90.00% and the grading speed was 3 pcs/s. In summary, the proposed spectral correction method is more suitable for apple transmission spectral correction. The mobile orchard local grading system of apple internal quality combined with the proposed spectral correction method can accurately detect apple sugar content and apple moldy core. The system meets the demand for internal quality detecting and grading of apples in orchard production areas.