
Research Advances and Prospects on Rapid Acquisition Technology of Farmland Soil Physical and Chemical Parameters
QIJiangtao, CHENGPanting, GAOFangfang, GUOLi, ZHANGRuirui
Research Advances and Prospects on Rapid Acquisition Technology of Farmland Soil Physical and Chemical Parameters
[Significance] Soil stands as the fundamental pillar of agricultural production, with its quality being intrinsically linked to the efficiency and sustainability of farming practices. Historically, the intensive cultivation and soil erosion have led to a marked deterioration in some arable lands, characterized by a sharp decrease in soil organic matter, diminished fertility, and a decline in soil's structural integrity and ecological functions. In the strategic framework of safeguarding national food security and advancing the frontiers of smart and precision agriculture, the march towards agricultural modernization continues apace, intensifying the imperative for meticulous soil quality management. Consequently, there is an urgent need for the rrapid acquisition of soil's physical and chemical parameters. Interdisciplinary scholars have delved into soil monitoring research, achieving notable advancements that promise to revolutionize the way we understand and manage soil resource. [Progress] Utilizing the the Web of Science platform, a comprehensive literature search was conducted on the topic of "soil," further refined with supplementary keywords such as "electrochemistry", "spectroscopy", "electromagnetic", "ground-penetrating radar", and "satellite". The resulting literature was screened, synthesized, and imported into the CiteSpace visualization tool. A keyword emergence map was yielded, which delineates the trajectory of research in soil physical and chemical parameter detection technology. Analysis of the keyword emergence map reveals a paradigm shift in the acquisition of soil physical and chemical parameters, transitioning from conventional indoor chemical and spectrometry analyses to outdoor, real-time detection methods. Notably, soil sensors integrated into drones and satellites have garnered considerable interest. Additionally, emerging monitoring technologies, including biosensing and terahertz spectroscopy, have made their mark in recent years. Drawing from this analysis, the prevailing technologies for soil physical and chemical parameter information acquisition in agricultural fields have been categorized and summarized. These include: 1. Rapid Laboratory Testing Techniques: Primarily hinged on electrochemical and spectrometry analysis, these methods offer the dual benefits of time and resource efficiency alongside high precision; 2. Rapid Near-Ground Sensing Techniques: Leveraging electromagnetic induction, ground-penetrating radar, and various spectral sensors (multispectral, hyperspectral, and thermal infrared), these techniques are characterized by their high detection accuracy and swift operation. 3. Satellite Remote Sensing Techniques: Employing direct inversion, indirect inversion, and combined analysis methods, these approaches are prized for their efficiency and extensive coverage. 4. Innovative Rapid Acquisition Technologies: Stemming from interdisciplinary research, these include biosensing, environmental magnetism, terahertz spectroscopy, and gamma spectroscopy, each offering novel avenues for soil parameter detection. An in-depth examination and synthesis of the principles, applications, merits, and limitations of each technology have been provided. Moreover, a forward-looking perspective on the future trajectory of soil physical and chemical parameter acquisition technology has been offered, taking into account current research trends and hotspots. [Conclusions and Prospects] Current advancements in the technology for rapaid acquiring soil physical and chemical parameters in agricultural fields have been commendable, yet certain challenges persist. The development of near-ground monitoring sensors is constrained by cost, and their reliability, adaptability, and specialization require enhancement to effectively contend with the intricate and varied conditions of farmland environments. Additionally, remote sensing inversion techniques are confronted with existing limitations in data acquisition, processing, and application. To further develop the soil physical and chemical parameter acquisition technology and foster the evolution of smart agriculture, future research could beneficially delve into the following four areas: Designing portable, intelligent, and cost-effective near-ground soil information acquisition systems and equipment to facilitate rapid on-site soil information detection; Enhancing the performance of low-altitude soil information acquisition platforms and refine the methods for data interpretation to ensure more accurate insights; Integrating multifactorial considerations to construct robust satellite remote sensing inversion models, leveraging diverse and open cloud computing platforms for in-depth data analysis and mining; Engaging in thorough research on the fusion of multi-source data in the acquisition of soil physical and chemical parameter information, developing soil information sensing algorithms and models with strong generalizability and high reliability to achieve rapaid, precise, and intelligent acquisition of soil parameters.
physical and chemical parameters of soil / spectral analysis / electromagnetic induction / ground penetrating radar / satellite remote sensing / fast sensing {{custom_keyword}} /
Table 1 Common electrochemical analysis methods in soil detection表1 土壤检测中常见的电化学分析方法 |
Table 2 Common used methods of spectral analysis in soil detection表2 土壤检测中常见的光谱分析方法 |
光谱分析方法 | 工作原理 | 主要应用 | 优点 | 局限 |
---|---|---|---|---|
近红外光谱(Visible-Infrared Spectroscopy, NIR) | 当近红外光照射到样品上时,样品中的分子会吸收特定波长的光,通过测量样品在不同波长下的吸收强度,获取样品中化学键和分子的振动或转动信息,从而获得样品的理化信息[17] | 应用广泛,包括土壤有机质、重金属、氮磷钾、有机碳、pH、质地、含水率等 | 多组分分析、非破坏性、分析速度快、适应性强和无需特殊样本制备等 | 波峰易重叠、数据处理复杂、仪器设备维护需要专业人士进行操作、需通过较复杂的模型来提高检测精度 |
激光诱导击穿光谱(Laser-Induced Breakdown Spectroscopy, LIBS) | 利用激光脉冲的高能量密度使样品表面产生等离子体,形成高温高压的微观区域,在等离子体形成和衰减的过程中,样品中的原子和离子会发生电子激发、跃迁和辐射,产生特征光谱信号。通过分析该光谱信号,可以确定样品中的元素组成和浓度[18] | 土壤重金属 | 制样简单、实时检测、非接触性、无需样品预处理、灵敏度高 | 设备昂贵、分析深度有限、土壤产生的基体效应和光谱干扰会对测定结果产生影响、检测仪器昂贵、数据处理复杂 |
荧光光谱(Fluorescence Spectroscopy, FS) | 通过激发样品中的分子或原子,使其产生荧光发射,然后通过分光仪检测荧光发射的波长和强度,从而分析样品的成分和性质[19] | 土壤重金属、微量元素 | 灵敏度高、非破坏性、响应快、实时监测 | 荧光强度易受干扰、设备昂贵 |
原子吸收光谱(Atomic Absorption Spectroscopy, AAS) | 通过将待测样品中的金属元素转化为气态原子,并使用特定波长的光源进行光吸收测量,吸收光强度与待测金属元素的浓度成正比。通过测量光源发射光束进入和离开样品后的光强度差异,可以确定待测金属元素的浓度[20] | 微量金属元素 | 选择性和灵敏度高 | 需要较复杂的光学系统,样品预处理和仪器校准复杂,并需要一定的实验操作和专业知识,单元素分析 |
Table 3 Common soil detection sensors表3 常见的土壤检测传感器 |
传感器 | 主要应用 | 优点 | 局限 |
---|---|---|---|
电磁感应传感器 (Electromagnetic Induction Sensor) | 土壤电导率、含水率、 含盐率、质地等 | 快速高效、非破坏性、频率范围广泛 | 易受外界电磁干扰、成本较高 |
探地雷达 (Ground Penetrating Radar,GPR) | 土壤含水率 | 非侵入性、实时性、快速精准 | 探测深度有限、数据解释复杂、 设备昂贵 |
多光谱 (Multispectral) | 土壤含水率、含盐率 | 可获取较大范围的遥感数据,数据量较小,处理和分析相对简单 | 光谱信息较少,空间分辨率相对较低,无法提供较精细的地物定位和描述 |
高光谱 (Hyperspectral) | 土壤有机质、土壤含水率、含盐率等 | 提供大量的连续光谱信息、 空间分辨率较高 | 数据量大、数据处理复杂、 成本较高 |
热红外 (Infrared thermal) | 土壤含水率、重金属 | 对温度和热量的变化较为敏感,不受天气或光照影响 | 空间分辨率较低、价格高昂 |
Table 4 Common remote sensing image data in soil detection表4 土壤检测中常见的遥感影像数据 |
遥感影像数据 | 主要应用 | 特点 |
---|---|---|
MODIS | 土壤有机质、含水量 | 全球免费、光谱范围广、更新频率高、适用于短期变化的监测和分析 |
Landsat | 土壤有机质、水盐、pH | 多光谱波段、高空间分辨率、长时间序列观测 |
Sentinel | 土壤有机质、水盐 | 免费开放、多源数据、高时空分辨率 |
高分系列 | 土壤含水率、有机质、pH | 高分辨率、大幅宽覆盖、灵活性高 |
Table 5 New rapid acquisition technology in soil detection表5 土壤检测中的新型快速获取技术 |
新型快速获取技术 | 主要应用 | 优势 | 局限 |
---|---|---|---|
生物传感器 | 土壤重金属离子 | 灵敏度高、专一性强、分析速度快、成本低 | 寿命短,易受物理、化学环境因素的影响 |
环境磁学 | 土壤重金属、污染物 | 灵敏度高、非接触性、多参数测量 | 仅限特定环境、易受干扰影响、数据解释复杂 |
太赫兹光谱 | 土壤重金属、含水率 | 检测速度快、灵敏度高、非破坏性 | 传输距离受限、数据处理复杂、缺乏标准库 |
伽马能谱 | 土壤放射性元素、质地、全氮 | 高能粒子的能量范围广、分辨率高 | 探测效率相对较低 |
1 |
李银霞. 祁连山南坡不同土地利用方式下的土壤理化特征研究[D]. 西宁: 青海师范大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
贾国建, 杜振宇, 马丙尧, 等. 山东省长期连作杨树人工林的土壤理化特性与综合肥力评价[J]. 中国土壤与肥料, 2023(4): 8-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
张少彬, 冯钟钟. 重铬酸钾容量法测定广东省部分地区土壤中有机质含量的研究[J]. 广东化工, 2023, 50(4): 189-191, 213.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
赵洁, 王莉. 分光光度法快速测定硝、铵态氮的可行性研究[J]. 现代农业科技, 2011(6): 42, 45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
国家标准局. 土壤全氮测定法(半微量开氏法): NY/T 53—1987 [S]. 1987.
Administrative Organization National Bureau of Standards. Method for the determination of soil total nitrogen(Semi-micro Kjeldahl method): NY/T 53—1987 [S]. 1987.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
赵金兰, 张树莲, 祁建峰. 硫酸-高氯酸-钼锑抗比色法测定土壤全磷的注意事项[J]. 现代农业科技, 2009(21): 234.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
王芳, 杨静, 李彩虹, 等. 全自动消解仪-火焰光度法测定土壤中全钾实验[J]. 宁夏农林科技, 2017, 58(7): 38-39.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
王瑞琨. 用电位法测定土壤pH值[J]. 山西化工, 2018, 38(3): 64-65, 76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
仇皓雷, 王海燕. 机器学习在土壤性质预测研究中的应用进展[J/OL]. 生态学杂志. (2023-11-20)[2024-02-20].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
齐威. 基于电磁感应技术的土壤水分反演与三维可视化研究[D]. 阿拉尔: 塔里木大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
冯春晖, 刘新路, 纪文君, 等. 基于电磁感应技术的棉田土壤电导率时空异质性研究[J]. 土壤学报, 2022, 59(4): 999-1011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
韩建文, 罗德芳, 冯春晖, 等. 基于无人机多光谱协同电磁感应技术的棉田土壤盐渍化监测研究[J]. 塔里木大学学报, 2023, 35(3): 52-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
宁娟, 丁建丽, 杨爱霞, 等. 基于高光谱与电磁感应技术的干旱区绿洲土壤含水量反演研究[J]. 干旱地区农业研究, 2018, 36(3): 258-265.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
王爽. 基于地面实测热红外光谱和电磁感应技术的土壤盐渍化建模研究[D]. 乌鲁木齐: 新疆大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
谢国青, 陈紫秋. 探地雷达功率谱特征与土壤含水率相关关系分析[J]. 中国水运, 2022, 22(11): 156-158.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
李鑫星, 曹闪闪, 白雪冰, 等. 多光谱技术在土壤成分含量检测中的研究进展[J]. 光谱学与光谱分析, 2020, 40(7): 2042-2047.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
张同瑞, 赵庚星, 高明秀, 等. 基于近地面多光谱的黄河三角洲典型地区土壤含盐量估算研究[J]. 光谱学与光谱分析, 2016, 36(1): 248-253.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
聂鹏程, 钱程, 覃锐苗, 等. 天空地一体化信息感知与融合技术发展现状与趋势[J]. 智能化农业装备学报(中英文), 2023, 4(2): 1-11.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
王银凤. 基于无人机多光谱遥感的土壤含水率反演模型研究[D]. 兰州: 兰州理工大学, 2023.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
张成才, 王蕊, 侯佳彤, 等. 基于特征变量筛选的无人机多光谱遥感土壤含水量反演[J/OL]. 中国农村水利水电. (2024-01-15)[2024-02-20].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
夏晨真, 姜艳艳, 张星宇, 等. 基于无人机高光谱影像的黑土区玉米农田土壤有机质估算[J]. 光谱学与光谱分析, 2023, 43(8): 2617-2626.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
李振. 基于无人机高光谱的农田土壤盐分估测研究[D]. 济南: 山东师范大学, 2023.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
王瑾杰, 丁建丽, 葛翔宇, 等. 分数阶微分技术在机载高光谱数据估算土壤含水量中的应用[J]. 光谱学与光谱分析, 2022, 42(11): 3559-3567.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
吴卫熊, 金向丹, 李浩翔, 等. 融合无人机多光谱和热红外影像的蔗田土壤含水率监测研究[J]. 节水灌溉, 2024(3): 99-103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
严小坚, 张敏, 严小兵, 等. 基于无人机热红外摄影的土壤重金属污染范围监测方法研究[J]. 环境科学与管理, 2023, 48(11): 131-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
李明, 秦凯, 赵宁博, 等. 基于TASI热红外数据的黑土土壤发射率光谱与土壤全钾含量关系研究[J]. 光谱学与光谱分析, 2020, 40(9): 2862-2868.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
66 |
贾鲁净, 杨联安, 冀泳帆, 等. 卫星遥感反演土壤有机质研究进展[J]. 遥感信息, 2023, 38(2): 1-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
67 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
68 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
69 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
70 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
71 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
72 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
73 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
74 |
毛鸿欣, 贾科利, 张旭. 基于实测高光谱和Sentinel-2B影像的银川平原土壤盐分反演[J]. 云南大学学报(自然科学版), 2021, 43(5): 929-941.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
75 |
孙媛, 贾萍萍, 尚天浩, 等. 基于地表高光谱与OLI影像的土壤含盐量和pH值估测[J]. 干旱地区农业研究, 2021, 39(1): 164-174.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
76 |
尚天浩, 陈睿华, 张俊华, 等. 基于实测高光谱与Sentinel-2B数据的银北土壤Na+含量估测[J]. 应用生态学报, 2021, 32(3): 1023-1032.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
77 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
78 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
79 |
王辉. 农田土壤和灌溉水中重金属检测关键技术研究[D]. 北京: 中国农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
80 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
81 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
82 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
83 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
84 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
85 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
86 |
夏佳欣, 范成发, 王可嘉, 等. 基于太赫兹透射谱的土壤含水量测量[J]. 激光与光电子学进展, 2011, 48(2): ID 023001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
87 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
88 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
89 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
90 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
91 |
王鹏, 朱琨日, 窦玉春, 等. 基于车载伽马能谱仪的土壤放射性元素识别研究[J]. 机械工业标准化与质量, 2023(7): 17-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
92 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
93 |
陈学庚, 温浩军, 张伟荣, 等. 农业机械与信息技术融合发展现状与方向[J]. 智慧农业(中英文), 2020, 2(4): 1-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
94 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |