
Research on key technologies of crop growth process simulation model and morphological 3D visualization
Zhu Yeping, Li Shijuan, Li Shuqin
Research on key technologies of crop growth process simulation model and morphological 3D visualization
According to the demand of digitized analysis and visualization representation of crop yield formation and variety adaptability analysis, aiming at improving the timeliness, coordination and sense of reality of crop simulation model, key technologies of crop growth process simulation model and morphological 3D visualization were studied in this research. The internet of things technology was applied to collect the field data. The multi-agent technology was used to study the co-simulation method and design crop model framework. Winter wheat (Triticum aestivum L.) was taken as an example to conducted filed test, the 3D morphology visualization system was developed and validated. Taking three wheat varieties, Hengguan35 (Hg35), Jimai22 (Jm22) and Heng4399 (H4399) as research objects, logistic equation was constructed to simulate the change of leaf length, maximum leaf width, leaf height and plant height. Parametric modeling method and 3D graphics library (OpenGL) were used to build wheat organ geometry model so as to draw wheat morphological structure model. The R2 values of leaf length, maximum leaf width, leaf height and plant height were between 0.772-0.999, indicating that the model has high fitting degree. F values (between 10.153-4359.236) of regression equation and Sig. values (under 0.05) show that the model has good significance. Taking wheat as example, this research combined wheat growth model and structure model effectively in order to realize the 3D morphology visualization of crop growth processes under different conditions, it will provide references for developing the crop simulation visualization system, the method and related technologies are suitable for other field crops such as corn and rice, etc.
crop simulation model / growth process visualization / morphology visualization / agent / technology 3D {{custom_keyword}} /
Fig. 2 Monitoring interface of farmland information remote dynamic monitoring system图2 农田信息远程动态监控系统监测界面 |
Table 1 Design scheme for wheat field experiment表1 试验设计方案 |
主因子 品种(V) | 副因子 氮肥(N)(kg/hm2) | ||
---|---|---|---|
V1 | 衡观35(Hg35) | N1 | 0 |
V2 | 济麦22(Jm22) | N2 | 225 |
V3 | 衡4399(H4399) | N3 | 300 |
Table 2 Genetic parameters for wheat varieties Hg35, Jm22 and H4399表2 Hg35、Jm22和H4399小麦遗传参数 |
品种 | 遗传参数 | |||
---|---|---|---|---|
Lm | Ln | 出苗积温 (℃·d) | 叶热间距 (℃·d) | |
Hg35 | 10 | 4 | 130 | 90 |
Jm22 | 11 | 4 | 135 | 95 |
H4399 | 10 | 4 | 125 | 88 |
Table 3 Leaf length, maximum leaf width, leaf height and plant height simulation models for Hg35表3 Hg35小麦叶长、最大叶宽、叶片高度和株高模拟模型 |
类别 | 处理 | 叶位* | 回归方程 | R2 | F | Sig. |
---|---|---|---|---|---|---|
叶长 | N1 | 5 | Y =20/(1+3.4*e-0.005x) | 0.861 | 30.911 | 0.003 |
6 | Y =20/(1+1.24*e-0.004x) | 0.907 | 48.759 | 0.001 | ||
7 | Y =20/(1+2*e-0.004x) | 0.887 | 39.305 | 0.002 | ||
N2 | 5 | Y =25/(1+4.2*e-0.005x) | 0.983 | 340.191 | 0.000 | |
6 | Y =25/(1+0.675*e-0.002x) | 0.813 | 17.372 | 0.014 | ||
7 | Y =25/(1+1.775*e-0.002x) | 0.772 | 10.153 | 0.045 | ||
N3 | 5 | Y =25/(1+17.83*e-0.008x) | 0.916 | 65.700 | 0.000 | |
6 | Y =25/(1+0.925*e-0.002x) | 0.919 | 57.042 | 0.001 | ||
7 | Y =25/(1+2.65*e-0.003x) | 0.950 | 57.049 | 0.005 | ||
最大叶宽 | N1 | 5 | Y =1.4/(1+2.23*e-0.002x) | 0.868 | 39.559 | 0.001 |
6 | Y =1.4/(1+1.56*e-0.002x) | 0.98 | 240.758 | 0.000 | ||
7 | Y =1.4/(1+3.26*e-0.005x) | 0.959 | 117.673 | 0.000 | ||
N2 | 5 | Y =1.6/(1+3.76*e-0.002x) | 0.905 | 47.363 | 0.001 | |
6 | Y =1.6/(1+1.52*e-0.003x) | 0.853 | 29.116 | 0.003 | ||
7 | Y =1.6/(1+1.41*e-0.004x) | 0.864 | 38.040 | 0.001 | ||
N3 | 5 | Y =1.6/(1+2.64*e-0.003x) | 0.971 | 165.689 | 0.000 | |
6 | Y =1.6/(1+2.17*e-0.004x) | 0.999 | 4359.236 | 0.000 | ||
7 | Y =1.6/(1+1.5*e-0.004x) | 0.853 | 17.371 | 0.025 | ||
叶片高度 | N1 | 5 | Y =15/(1+45.56*e-0.006x) | 0.888 | 47.609 | 0.000 |
6 | Y =23/(1+15.59*e-0.006x) | 0.885 | 53.755 | 0.000 | ||
7 | Y =37/(1+37.26*e-0.009x) | 0.962 | 202.286 | 0.000 | ||
N2 | 5 | Y =17/(1+130.42*e-0.006x) | 0.974 | 262.484 | 0.000 | |
6 | Y =25/(1+22.58*e-0.007x) | 0.954 | 125.491 | 0.000 | ||
7 | Y =38/(1+30.29*e-0.009x) | 0.994 | 1083.77 | 0.000 | ||
N3 | 5 | Y =19/(1+34.9*e-0.005x) | 0.93 | 93.405 | 0.000 | |
6 | Y =28/(1+17.98*e-0.006x) | 0.969 | 283.65 | 0.000 | ||
7 | Y =43/(1+32.25*e-0.008x) | 0.982 | 447.178 | 0.000 | ||
株高 | N1 | -- | Y =45/(1+530.36*e-0.008x) | 0.981 | 462.432 | 0.000 |
N2 | -- | Y =51/(1+157.39*e-0.006x) | 0.959 | 211.479 | 0.000 | |
N3 | -- | Y =52/(1+208.57*e-0.007x) | 0.969 | 277.546 | 0.000 |
注:小麦植株自下而上的叶片位置。 |
Fig. 7 Hg35 growth simulation model under different N conditions图7 Hg35小麦不同施氮处理生长模拟 |
Fig. 8 JM22 growth simulation model under different N conditions图8 Jm22小麦不同施氮处理生长模拟 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
曹宏鑫, 张春雷, 金之庆 , 等. 数学化栽培的框架与技术体系探讨[J]. 耕作与栽培, 2005, (03):4-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
曹卫星, 朱艳, 田永超 等. 作物精确栽培技术的构建与实现[J]. 中国农业科学, 2011 (19):3955-3969.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
高亮之, 金之庆 . RCSODS—水稻栽培计算机模拟优化决策系统[J], 农业网络信息, 1993, (3):14-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
潘学标, 韩湘玲, 石元春 . COTGROW: 棉花生长发育模拟模型[J]. 棉花学报, 1996,8(4):180-188.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
冯利平, 韩学信 . 棉花栽培计算机模拟决策系统(COTSYS)[J]. 棉花学报, 1999, (5):251-254.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
孙忠富, 陈人杰 . 温室番茄生长发育动态模型与计算机模拟系统初探[J]. 中国生态农业学报, 2003,11(2):84-88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
诸叶平, 李世娟, 孙开梦 , 等. 作物生产信息数字化研究[C]// 中国数字农业与农村信息化学术研究研讨会论文集, 中国北京. 2005: 19-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
赵春江, 诸德辉, 李鸿祥 等. 小麦栽培管理计算机专家系统的研究与应用[J]. 中国农业科学, 1997,30(5):42-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
曹卫星, 潘洁, 朱艳 , 等. 基于生长模型与Web应用的小麦管理决策支持系统[J]. 农业工程学报, 2007,23(1):133-138.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
曹宏鑫, 金之庆, 石春林 , 等. 基于Web与模拟模型的水稻栽培数字化设计[J]. 农业工程学报, 2008,24(12):137-140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
王纪章 . 基于物联网的温室环境智能管理系统研究[D]. 镇江: 江苏大学, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
诸叶平 . 小麦模拟实验系统的可视化界面技术[J]. 农业网络信息, 1995, (4):6-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
严定春, 诸叶平, 李世娟 . 小麦—玉米连作协同模型系统研究[J]. 农业网络信息, 2007(9):21-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
刘升平, 诸叶平 . 基于Agent技术的小麦生长模拟模型的建立[J]. 安徽农业科学, 2007,35(20):6026-6028.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
林玉彬 . 基于全局敏感度分析的GreenLab模型参数估计研究[D]. 北京: 中国科学院大学, 2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
常丽英, 顾东祥, 张文宇 , 等. 水稻叶片伸长过程的模拟模型[J]. 作物学报, 2008,34(2):311-317.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
刘慧, 汤亮, 张文宇 , 等. 基于模型的可视化水稻生长系统的构建与实现[J]. 农业工程学报, 2009,25(9):148-154.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |