“技术方法” 栏目所有文章列表

(按年度、期号倒序)

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部
Please wait a minute...
  • 全选
    批量引用 |
  • 姚建恩, 刘海秋, 杨曼, 冯金赢, 陈秀, 张佩佩
    智慧农业(中英文). 2024, 6(5): 40-50. https://doi.org/10.12133/j.smartag.SA202309006

    目的和意义] 原始星载日光诱导叶绿素荧光(Sunlight-induced Chlorophyll Fluorescence, SIF)数据存在足迹离散、时空分辨率低等缺陷,针对这些问题许多研究进行了SIF重构,但大多数重构后的新型SIF数据分辨率仍较低,难以应用到精细尺度农业领域,且部分高精度SIF重构数据并非基于原始卫星SIF数据重构。OCO-2 SIF原始数据空间分辨率高(1.29 km×2.25 km),植被异质性低,对区域尺度高分辨率作物SIF重构具备突出价值。 [方法] 选取美国区域尺度大豆为研究对象,利用原始OCO-2 SIF和MODIS产品进行高分辨率大豆SIF重构,通过组合多个卫星轨迹经过的大豆种植区,提高SIF样本总量,与增强植被指数(Enhanced Vegetation Index, EVI)、光合有效辐射分量(Fraction of Photosynthetically Active Radiation, FPAR)和土地表面温度(Land Surface Temperature, LST)等预测因子足迹匹配后构建多源遥感数据集,代入BP神经网络训练模型,进而生成区域尺度空间连续且具有较高时空分辨率(8 d、500 m)的重构SIF数据集(BPSIF)。 [结果和讨论] 加入EVI,FPAR和LST的SIF重构模型R2达0.84,利用总初级生产力(Gross Primary Productivity, GPP)数据对BPSIF进行质量评价,OCO-2 SIF与 GPP的Pearson相关系数为0.53,而BPSIF与GPP相关系数提升到0.8,表明本研究生成的BPSIF数据集更加可靠。 [结论] 研究成果有望为区域尺度大豆作物SIF研究提供理论依据和数据支撑。

  • 刘睿萱, 张方照, 张继波, 李振海, 杨俊涛
    智慧农业(中英文). 2024, 6(5): 51-60. https://doi.org/10.12133/j.smartag.SA202309019

    【目的/意义】 在全球气候变暖的大背景下,准确确定冬小麦的适宜播种期对于提高小麦产量、保障国家粮食安全具有重要意义。本研究旨在对县级镇在气候变暖长时间序列影响下冬小麦适宜播种期进行分析。 【方法】 本研究以山东省齐河县为研究区域,基于1997—2022年的欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)再分析数据,首先,采用温度阈值法确定稳定通过18、16、14和0 ℃终日的日期,并从不同小麦品种的适宜播种温度、不同日期播种至越冬前≥0 ℃的积温、适播期历年日平均气温等关键播期指标对冬小麦适宜播种期进行统计分析;其次,利用叶龄积温法对冬前壮苗所需合适积温的日期进行测算;最后,结合实际生产实践情况,确定气候变暖趋势下齐河县各乡镇冬小麦的适宜播种期。 【结果和讨论】 从小麦适宜播种温度、播种至小麦越冬停止生长0 ℃的积温等农业气象指标,以及考虑齐河县种植的冬小麦品种,得出齐河县冬小麦适宜播种期为10月3日—10月16日,最佳播种期为10月5日—10月13日。但具体年份的适播期还需要依据当年的具体情况灵活播种。 【结论】 研究结果证明了温度阈值法和叶龄积温法在确定冬小麦适宜播种期研究中的可行性,通过温度变化趋势可判断冷冬或暖冬,及时调整播种时间以提高小麦产量,减少温度过高或过低对冬小麦的影响。本研究不仅可以为齐河县冬小麦产量评估提供决策参考,还可以为科学安排农业生产提供重要的理论依据。

  • 彭小丹, 陈锋军, 朱学岩, 才嘉伟, 顾梦梦
    智慧农业(中英文). 2024, 6(5): 88-97. https://doi.org/10.12133/j.smartag.SA202404011

    【目的/意义】 快速、准确地统计密集种植的苗木数量对苗木经营管理具有重要意义。为解决无人机航拍的密集种植苗木图像中苗木粘连、尺度差异大的问题,提出以点标签数据为监督信号的改进密集检测计数模型(Locate, Size and Count, LSC-CNN),同时实现苗木的检测和计数。 【方法】 改进的LSC-CNN模型通过将LSC-CNN模型特征提取网络的最后一层卷积替换为扩张卷积(Dilated Convolutions, DConv),实现在保留苗木细节特征的同时扩大感受野,帮助模型更好地理解上下文信息以区分粘连苗木。此外,在多个尺度分支前引入注意力机制(Convolutional Block Attention Module, CBAM)使模型聚焦于有助于苗木检测和计数的关键特征,以更好地适应不同尺度的苗木。为解决类别不平衡问题,提高模型的泛化能力,将损失函数替换为标签平滑交叉熵损失函数。 【结果和讨论】 经测试,改进LSC-CNN模型在456幅苗木图像的测试集上的平均绝对误差(Mean Absolute Error, MAE)、均方根误差(Root Mean Square Error, RMSE)和平均计数准确率(Mean Counting Accurate, MCA)分别为14.24株、22.22株和91.23%,三项指标均优于IntegrateNet、PSGCNet、CANet、CSRNet、CLTR和LSC-CNN模型。 【结论】 改进LSC-CNN模型能够准确实现密集种植苗木的检测和计数,适用于多种树木的检测和计数工作。

  • 胡程喜, 谭立新, 王文胤, 宋敏
    智慧农业(中英文). 2024, 6(5): 119-127. https://doi.org/10.12133/j.smartag.SA202403016

    【目的/意义】 名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一种新型深度学习算法解决名优茶采摘点的精确分割难题。 【方法】 对传统的DeepLabV3+算法进行轻量化改进。首先,针对其模型体量大、训练时间长的问题,使用MobilenetV2网络提取图像的初始特征,并按照网络结构划分深浅层特征;其次,将高效通道注意力网络(Efficient Channel Attention Network, ECANet)与空洞空间卷积池化金字塔(Atrous Spatial Pyramid Pooling, ASPP)模块结合,得到ECA_ASPP模块,并将深层特征输入到ECA_ASPP模块中进行多尺度特征融合以减少无效信息,将经过处理后的深浅层特征相加,随后通过卷积和上采样的方式对特征信息进行还原,得到分割结果;最后,通过对识别结果进行处理以获得茶叶嫩芽采摘点。 【结果和讨论】 改进后的DeepLabV3+在茶叶嫩芽数据集上的平均交并比达到93.71%,平均像素准确率达到97.25%,模型参数量由原来以Xception为底层网络的54.714 M下降至5.818 M。 【结论】 本研究在茶叶嫩芽结构分割上相对于原版DeepLabV3+的检测速度更快、参数量更小,同时保证了较高的准确率,为智能采茶机器人的采摘提供了新的定位方法。

  • 叶大鹏, 景均, 张之得, 李辉煌, 吴昊宇, 谢立敏
    智慧农业(中英文). 2024, 6(5): 139-152. https://doi.org/10.12133/j.smartag.SA202404002

    【目的/意义】 为了解决图像尺寸变化和目标尺度变换共存对小目标检测精度的影响问题,本研究提出了一种新的检测模型:Multi-Strategy Handling YOLOv8(MSH-YOLOv8)。 【方法】 该模型在YOLOv8的基础上增加一个检测头,以提高小尺度目标敏感度;引入Swin Transformer的检测结构到头部网络,以减少计算冗余;引入包含可变形卷积的C2f_Deformable Convolutionv4(C2f_DCNv4)结构和Swin Transformer编码器结构重构YOLOv8主干网络,优化并增强其特征传递和提取能力,提高小目标敏感度;采用基于规范化的注意力模块(Normalization-based Attention Module, NAM)优化网络检测速度和准确性;用Wise-Intersection over Union Loss(WIoU)代替原损失函数,以提高训练效果和收敛速度;在后处理阶段应用分辨率动态训练、多尺度测试、软非极大值抑制算法(Soft-Non-Maximum Suppression, Soft-NMS)、加权边界框融合算法(Weighted Boxes Fusion, WBF)等方法,提高尺度变化下小目标检测效果。以蘑菇为研究对象,在开放数据集Fungi上开展实验。 【结果和讨论】 MSH-YOLOv8的平均正确率(Average Precision50, AP50)和AP@50-95分别达到了98.49%和75.29%,其中小目标检测指标值APs达39.73%。相较于主流模型YOLOv8,三项指标分别提高了2.34%,4.06%和8.55%;相较于优秀模型Transformer Prediction Heads-YOLOv5(TPH-YOLOv5),三项指标分别提高了2.14%,2.76%和6.89%。 【结论】 本研究提出的MSH-YOLOv8改进方法可在图像尺寸变化与目标尺度变化条件下有效提高小目标的检测效果。