
采用表面增强拉曼光谱技术快速检测脐橙果皮中抑霉唑残留
Rapid Detection of Imazalil Residues in Navel Orange Peel Using Surface-Enhanced Raman Spectroscopy
由于采后处理过程中脐橙保鲜剂抑霉唑易通过果皮渗进果肉中残留,不慎食用后会对人体产生危害。因此,本研究探索一种基于表面增强拉曼光谱技术(Surface-Enhanced Raman Spectroscopy,SERS)的脐橙果皮中抑霉唑残留的快速检测方法。首先对SERS检测条件进行优化,分别确定了最优的检测条件为反应时间2 min,金胶加入量400 µL,NaBr作为电解质溶液且加入量为25 µL。基于以上最优检测条件,以自适应迭代惩罚最小二乘法(Adaptive Iterative Reweighted Penalized Least Squares,air PLS)、air PLS+归一化、air PLS+基线校正、air PLS+一阶导数、air PLS+标准正态变量(Standard Normal Distribution,SNV)和air PLS+多元散射校正(Multiplicative Scatter Correction,MSC)处理后的6组光谱数据为研究对象,分别采用这6种光谱预处理法建立支持向量回归(Support Vector Regression,SVR)模型并对预测性能进行比较后发现,air PLS方法所建立模型的预测集相关系数(Coefficient of the Determinant for the Prediction Set,RP)最大,预测集均方根误差(Root-Mean-Square Error of Prediction,RMSEP)最小。对光谱数据进行主成分分析(Principal Component Analysis,PCA)特征提取,选择前7个主成分得分作为SVR预测模型的输入值。采用SVR、多元线性回归(Multiple Linear Regression,MLR)和偏最小二乘回归(Partial Least Squares Regression,PLSR)三种建模方法分析比较其对应的预测性能,其中SVR模型的预测集R P可高达0.9156,预测集RMSEP为4.8407 mg/kg,相对标准偏差(Relative Standard Deviation,RPD)为2.3103,表明基于SVR算法对脐橙表面抑霉唑残留的预测值越接近实测值,越能有效提高模型预测准确性。试验结果表明,利用SERS结合PCA及SVR建模,可实现对脐橙果皮中抑霉唑残留的快速检测。
Imazalil, a preservative for navel orange in the process of postharvest processing, is easy to seep into the flesh through the peel and produce residues in the flesh, which is vulnerable to cause endanger to human body if it was eaten accidentally. Base on this, a fast detection method of imazalil residues in navel orange peel ,namely surface-enhanced Raman spectroscopy (SERS) was proposed in this study. Firstly, the SERS detection conditions of imazalil residues in navel orange peel were optimized, and the optimal detection conditions were determined as follows: Reaction time of 2 min, gold colloid of 400 µL, NaBr as electrolyte solution, NaBr dosage of 25 µL. Based on the above optimal conditions, 6 groups of spectral data processed by adaptive iterative penalized least squares (air PLS), air PLS combination with normalization, air PLS combination with baseline correction, air PLS combination with first derivative, air PLS combination with standard normal distribution (SNV), air PLS combination with multiplicative scatter correction (MSC) were used to establish support vector regression (SVR) models and compare the models prediction performance. And air PLS method was selected as the spectral pretreatment method, because the value of correlation coefficient computed value of prediction set (RP) is the largest, and the value of root mean square error calculated value of the prediction set (RMSEP) is the smallest. Then, principal component analysis (PCA) was used to extract the features from spectral data, and the first seven principal component scores were selected as the input values of SVR prediction model. SVR, multiple linear regression (MLR) and partial least squares regression (PLSR) were used to analyze and compare the prediction performances. The RP value of prediction set of SVR prediction model could reach 0.9156, the RMSEP value of their prediction set was 4.8407 mg/kg, and the relative standard deviation computation value (RPD) was 2.3103, which indicated that the closer the predicted value of imazalil residue on navel orange surface based on SVR algorithm was to the measured value, the more effective the prediction accuracy of the model could be. The above data indicated that the speedy detection of imazalil residues in navel orange peel could be emploied by SERS coupled with PCA and SVR modeling method.
脐橙 / 抑霉唑 / 表面增强拉曼光谱 / 支持向量回归 / 多元线性回归 / 偏最小二乘回归 {{custom_keyword}} /
navel orange / imazalil / surface-enhanced Raman spectroscopy / support vector regression / multiple linear regression / partial least squares regression {{custom_keyword}} /
表1 抑霉唑理论计算和标准品拉曼特征峰归属Table 1 Raman peak attribution analysis of IMZ theoretical calculation and standard |
标准品拉曼特征峰/cm-1 | 理论拉曼特征峰/cm-1 | 主要特征峰归属 |
---|---|---|
690 | 686 | 苯环弯曲振动、CH2面内摇摆、C-C面外弯曲、二氯苯基面外弯曲 |
983 | 977 | 苯环弯曲振动、二氯苯基上C=N-C和C-N-C与C=C-N的弯曲振动 |
1041 | 1051 | C-H剪式振动、C=C-H面外弯曲振动、CH2面内弯曲 |
1176 | 1177 | C-C和C-O伸缩振动、C-H弯曲振动、苯环面外弯曲 |
1378 | 1372 | N=C-N剪式振动、C-N对称伸缩、N-C-H剪式振动、苯环面内弯曲 |
1487 | 1487 | C-N-C非对称伸缩、C-H面外弯曲、CH2面外弯曲、CH2剪式振动 |
表 2 6组光谱预处理方法对SVR模型的评价Table 2 Evaluation of six spectral preprocessing methods for SVR model |
预处理 | R T | RMSEC | R P | RMSEP |
---|---|---|---|---|
air PLS | 0.9620 | 3.8165 | 0.9156 | 4.8407 |
air PLS+归一化 | 0.7955 | 9.1730 | 0.7890 | 9.0271 |
air PLS+基线校正 | 0.9105 | 6.4134 | 0.9010 | 5.7491 |
air PLS+一阶导数 | 0.9461 | 5.5340 | 0.8049 | 8.0074 |
air PLS+SNV | 0.9702 | 3.7241 | 0.6737 | 9.2194 |
air PLS+MSC | 0.9751 | 3.2697 | 0.6729 | 9.1564 |
表3 前7个主成分因子的方差贡献率Table 3 The variance contribution rates of the first 7 principal component factors |
主成分因子 | 方差贡献率/% | 累计方差贡献率/% |
---|---|---|
1 | 47.52 | 47.52 |
2 | 17.56 | 65.08 |
3 | 9.84 | 74.92 |
4 | 7.52 | 82.44 |
5 | 4.66 | 87.10 |
6 | 2.80 | 89.90 |
7 | 2.04 | 91.94 |
表4 不同建模方法对脐橙果皮中抑霉唑残留量的预测结果的影响Table 4 Influence of different modeling methods on prediction results of IMZ residues in navel orange peel |
评价指标 | SVR | MLR | PLSR |
---|---|---|---|
RP | 0.9156 | 0.9052 | 0.9064 |
RMSEP/(mg·kg-1) | 4.8407 | 5.3996 | 5.2774 |
RPD | 2.3103 | 2.3460 | 1.9830 |
1 |
唐剑鸿. 新媒体视域下赣南脐橙网络营销策略优化研究[J]. 食品研究与开发, 2021, 42(8): 229-230.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
王文军, 曾凯芳, 刘晓佳, 等. 不同保鲜剂对柑橘果实贮藏品质的影响[J]. 食品与机械, 2017, 33(4): 110-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
陈婷, 蔡艳, 段凯文, 等. 脐橙贮藏保鲜研究进展[J]. 农产品加工, 2019(20): 83-85.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
中华人民共和国农业农村部. 食品安全国家标准 食品中农药最大残留限量: GB 2763—2019[S]. 北京: 中国标准出版社, 2019.
Ministry of Agriculture and Rural Affairs of the People's Republic of China. National food safety standard—Maximum residue limits of pesticides in food: GB 2763-2019[S]. Beijing: Standards Press of China, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
谢建军, 陈捷, 李菊, 等. 改良QuEChERS法结合气相色谱串联质谱测定果蔬中20种杀菌剂[J]. 食品安全质量检测学报, 2013, 4(1): 82-88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
潘新明, 潘守奇, 于金玲, 等. 气相色谱法同时检测蔬菜中的7种不同性质农药残留[J]. 现代仪器, 2012, 18(2): 37-38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
郭晓湲, 排尔哈提·亚生, 刘晨阳, 等. 拉曼光谱技术的发展及其在生物医学领域中的应用[J]. 福州大学学报(自然科学版), 2021, 49(1): 135-142.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
袁雯雯, 沈健. 表面增强拉曼光谱定量分析技术几种方法的探讨[J]. 化学世界, 2021, 62(4): 193-200.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
郭红青, 刘木华, 袁海超, 等. 表面增强拉曼光谱技术快速检测鸭肉中的土霉素[J]. 食品安全质量检测学报, 2017, 8(1): 169-176.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
黄双根, 王晓, 吴燕, 等. SERS技术的小白菜中西维因农药残留检测[J]. 光谱学与光谱分析, 2019, 39(1): 130-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
王婷, 刘木华, 袁海超, 等. 鸡肉中丙酸睾酮残留表面增强拉曼光谱检测条件的优化[J]. 食品研究与开发, 2020, 41(2):1 35-139, 164.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
朱越洲, 张月皎, 李剑锋, 等. 表面增强拉曼光谱:应用和发展[J]. 应用化学, 2018, 35(9): 984-992.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析, 2019, 39(9): 2800-2806.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
李淑娟, 卞希慧, 李倩, 等. 基于近红外光谱的四元调和食用油定量分析[J]. 天津科技大学学报, 2018, 33(3): 18-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
徐夕博, 吕建树, 吴泉源, 等. 基于PCA-MLR和PCA-BPN的莱州湾南岸滨海平原土壤有机质高光谱预测研究[J]. 光谱学与光谱分析, 2018, 38(8): 2556-2562.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |