植保无人机飞防助剂与杀虫剂的混配方式对二化螟防治效果影响研究

资乐, 臧禹, 黄俊浩, 包瑞峰, 周志艳, 肖汉祥

智慧农业(中英文). 2021, 3(3): 52-59

PDF(877 KB)
PDF(877 KB)
智慧农业(中英文) ›› 2021, Vol. 3 ›› Issue (3) : 52-59. DOI: 10.12133/j.smartag.2021.3.3.202105-SA007
专题--智能植保机械与施药技术

植保无人机飞防助剂与杀虫剂的混配方式对二化螟防治效果影响研究

作者信息 +

Effects on Control Efficacy of Pesticide-Adjuvants Mixture against Rice Chilo Suppressalis(walker) Based on Plant Protection Unmanned Aerial Vehicle

Author information +
History +

本文亮点

为探究飞防助剂类型与杀虫剂的混配方式对水稻二化螟防治效果的影响,本研究以杀虫剂(10%甲维∙茚虫威SC、5%氯虫苯甲酰胺SC和0.8%鱼藤酮SC)、飞防助剂(有机硅助剂、矿物油助剂和卵磷脂助剂)、施药液量(21、24和27 L/hm2)为因素设计了3因素3水平的L9(34)正交试验,通过方差分析(ANOVA)方法对各因素的显著性水平进行了分析。结果表明,在本研究的试验条件下,施药后第14天,杀虫剂对水稻二化螟防治效果有显著性影响(P<0.05),飞防助剂对水稻二化螟防效有极显著影响(P<0.01);在设定的施药液量范围内(21~27 L/hm2),施药液量对水稻二化螟防效无显著性影响。混配方式7(0.8%鱼藤酮SC、有机硅助剂和27 L/hm2施药液量)具有较好的速效性与持效性,施药后第14天的防效达81.45%;混配方式4(5%氯虫苯甲酰胺SC、有机硅助剂和24 L/hm2施药液量)持效性显著,施药后第14天的防效为79.30%。本研究成果可为防治水稻二化螟的药液混配方式提供参考。

HeighLight

To explore the effect of pesticide-adjuvants mixture on the control efficacy against Rice Chilo Suppressalis(walker). This study designed a three-factor, three-level orthogonal experiments with pesticides (10% emamectin benzoate·indoxacard SC, 5% chlorantraniliprole SC and 0.8% rotenone SC), adjuvants(organosilicon, lecithin and mineral Oil) , spray volume (21,24 and 27 L/hm2), referred to the three-factor, three-level orthogonal experimental scheme. And made the blank factor the deviation to analyze its rationality. Analysis of variance (ANOVA) statistical method was used to analyze the significance level of each factor. Duncan's new multiple range test (DMRT) method was used to analyze the order of the influence of different levels of each factor on the control efficacy against Rice Chilo Suppressalis(walker). The results showed that, under the experiment conditions of this research, the mean square value of the deviation factor was smaller than the mean square value of the pesticides, the adjuvants and the spray volume, and the deviation of the orthogonal experiment was within a reasonable range. The main order of the effect of the three factors on the control efficacy of Rice Chilo Suppressalis(walker) was: adjuvants > pesticides > spray volumn. On the 14th day after spraying, pesticides showed a significant effect on the control efficacy (P<0.05) and adjuvants showed a highly significant effect on the control efficacy (P<0.01), and spray volume showed no significant effect on the control efficacy. On the 14th day after spraying, the level 3 of the factor "pesticides" was more effective, in the order of Rotenone > Chlorantraniliprole > Emamectin Benzoate·Indoxacard. The level 1 of the factor "adjuvants" was more effective, in the order of Organosilicon > Lecithin > Mineral Oil. The level 3 of the factor "spray volume" was more effective, in the order of 27 L/hm2 > 24 L/hm2 > 21 L/hm2. Therefore, a preferred pesticide-adjuvants mixture method was 0.8% rotenone SC, organosilicon adjuvants and 27 L/hm² of spray volume, which had a rapid and long-lasting control efficacy, and its control efficacy in the field reached 81.45% on the 14th day after spraying. Additionally, there was also a satisfactory pesticide-adjuvants mixture method that was 5% Chlorantraniliprole, organosilicon adjuvants and 24 L/hm² of spray volume. This mixture method also performed well, achieving 79.3% control efficacy in the field on the 14th day after spraying. This study could provide a reference for the optimization of the mixture methods of solutions (pesticides, adjuvants and spray volume) for controlling Rice Chilo Suppressalis(walker).

引用本文

导出引用
资乐 , 臧禹 , 黄俊浩 , 包瑞峰 , 周志艳 , 肖汉祥. 植保无人机飞防助剂与杀虫剂的混配方式对二化螟防治效果影响研究. 智慧农业. 2021, 3(3): 52-59 https://doi.org/10.12133/j.smartag.2021.3.3.202105-SA007
Le ZI , Yu ZANG , Junhao HUANG , Ruifeng BAO , Zhiyan ZHOU , Hanxiang XIAO. Effects on Control Efficacy of Pesticide-Adjuvants Mixture against Rice Chilo Suppressalis(walker) Based on Plant Protection Unmanned Aerial Vehicle. Smart Agriculture. 2021, 3(3): 52-59 https://doi.org/10.12133/j.smartag.2021.3.3.202105-SA007

参考文献

1
姜卫华. 二化螟的抗药性及综合防治研究[D].南京: 南京农业大学, 2011.
JIANG W. Study on insecticide resistance and integrated control of rice stem borer, Chilo suppressalis[D]. Nanjing: Nanjing Agricultural University, 2011.
2
何月平. 二化螟抗药性监测及治理与高毒农药替代药剂筛选研究[D]. 南京: 南京农业大学, 2008.
HE Y. Monitoring and management of insecticide resistance in Chilo suppressalis(walker) and screening of alternative insecticides for replacing highly toxic insecticedes[D]. Nanjing: Nanjing Agricultural University, 2008.
3
张俊杰. 水稻二化螟赤眼蜂寄生效果评价及其滞育机制研究[D]. 长春: 东北师范大学, 2015.
ZHANG J. Evaluation of parasitism on Chilo suppressalis walker by trichogramma and studies on mechnnisams of diapause in them[D]. Changchun: Northeast Normal University, 2015.
4
罗锡文, 廖娟, 胡炼, 等. 提高农业机械化水平促进农业可持续发展[J]. 农业工程学报, 2016, 32(1): 1-11.
LUO X, LIAO J, HU L, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the CSAE, 2016, 32(1): 1-11.
5
陈盛德. 植保无人机在水稻喷施中的雾滴沉积机理及作业参数研究[D].广州: 华南农业大学, 2018.
CHEN S. Research on droplet deposition mechanism and operating parameters of plant protection UAV for rice[D]. Guangzhou: South China Agricultural University, 2018.
6
HILZ E, VERMEER A W P. Spray drift review: The extent to which a formulation can contribute to spray drift reduction[J]. Crop Protection, 2013, 44: 75-83.
7
WANG X, HE X, SONG J, et al. Drift potential of UAV with adjuvants in aerial applications[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5): 54-58.
8
FAI AL B S, PESSIN G, FILHO G, et al. Fine-tuning of UAV control rules for spraying pesticides on crop fields: An approach for dynamic environments[J]. International Journal on Artificial Intelligence Tools, 2016, 25(1): ID 1660003.
9
盛辉. 环境作业变量对植保无人机喷雾参数的及田间防效验证[D]. 合肥: 安徽农业大学, 2019.
SHENG H. Effect of environmental operation variables on spray parameters of plant protection UAV and field validation[D]. Hefei: Anhui Agricultural University, 2019.
10
APPAH S, JIA W, OU M, et al. Analysis of potential impaction and phytotoxicity of surfactant-plant surface interaction in pesticide application[J]. Crop Protection, 2020, 127: ID 104961.
11
陈吟, 齐浩亮, 张龙, 等. 大田环境中不同助剂和喷头对无人机喷洒雾滴分布和漂移的影响[J]. 华南农业大学学报, 2020, 41(6): 50-58.
CHEN Y, QI H, ZHANG L, et al. Effects of different adjuvants and nozzles on droplet distribution and drift when applied with UAV[J]. Journal of South China Agricultural University, 2020, 41(6): 50-58.
12
张宗俭, 张春华, 李小龙. 桶混助剂的研发应用与发展趋势[J]. 现代农药, 2021, 20(1): 19-25.
ZHANG Z, ZHANG C, LI X. Research, application and development trend of tank-mixing adjuvant in China[J]. Modern Agrochemicals, 2021, 20(1): 19-25.
13
张宏军, 武鹏, 吴进龙, 等. 农用飞防专用制剂的现状与发展[J]. 农药科学与管理, 2018, 39(5): 13-17.
ZHANG H, WU P, WU J, et al. The recent status and development of specific formulation for aviation plant protection[J]. Pesticide Science and Administration, 2018, 39(5): 13-17.
14
NAUE J A, POLICELLO G A, BROWN W L. New organosilicon- and lecithin-based adjuvant: effect of lecithin HLB on adjuvant properties[M]. Pesticide Formulation and Delivery Systems: 37th Volume, Formulations with Ingredients on the EPA's List of Minimal Concern, West Conshohocken, PA: ASTM International, 2018: 43-62.
15
GASKIN R E, MURRAY R J, KRISHNA H, et al. Effect of adjuvants on the retention of insecticide spray on cucumber and pea foliage[J]. New Zealand Plant Protection, 2000, 53: 354-359.
16
王斌, 司乃国, 郭静, 等. 不同助剂对嘧菌酯防治3种植物病害的增效作用[J]. 农药学学报, 2020, 22(2): 293-298.
WANG B, SI N, GUO J, et al. Synergistic effect of different adjuvants on azoxystrobin against three plant diseases[J]. Chinese Journal of Pesticide Science, 2020, 22(2): 293-298.
17
洪峰, 潘惠文, 赵云峰, 等. 四氯虫酰胺混用不同助剂防治二化螟效果试验[J]. 黑龙江农业科学, 2016(6): 58-60.
HONG F, PAN H, ZHAO Y, et al. Field efficacy of mixed application silyuchong amide and different additives on Chilo suppressalis[J]. Heilongjiang Agricultural Sciences, 2016(6): 58-60.
18
杨望明, 田良元, 滕永梅, 等. 生物助剂安融乐对水稻二化螟减药控害增效作用试验[J]. 湖北植保, 2018(6): 24-25.
YANG W, TIAN L, TENG Y, et al. Experiment about the biological additive Anrongle on the control effect of Chilo suppressalis by reducing the insecticide and improving effect[J]. Hubei Plant Protection, 2018(6): 24-25.
19
孙梅梅, 谌江华, 任少鹏. 添加助剂对无人机喷雾技术防治水稻害虫的效果评价[J]. 湖南农业科学, 2019(9): 55-57.
SHUN M, SHEN J, RENG S. Evaluation of control effect of UAV spray on rice pests by adding adjuvant[J]. Hunan Agricultural Sciences, 2019(9): 55-57.
20
聂太礼, 程慧煌, 吴珍平, 等. 棉花应用大疆T16无人机飞防的操作技术要点[J]. 棉花科学, 2020, 213(6): 39-42.
NIE T, CHENG H, WU Z, et al. Operational technical pointsof cotton application dajiang T16 UAV flight defense[J]. Cotton Sciences, 2020, 213(6): 39-42.
21
王少丽, 朱国仁, 张友军. 农用有机硅喷雾助剂在害虫化学防治中的应用[J]. 长江蔬菜, 2010(18): 112-115.
WANG S, ZHU G, ZHANG Y. Application of organic silicon surfactant in chemical control of agricultural pest[J]. Journal of Changjiang Vegetables, 2010(18): 112-115.
22
徐鹏飞, 康廷浩, 张园, 等. 卵磷脂桶混助剂的特性及其在防治稻飞虱中对氟啶虫胺腈的协同增效作用[J]. 农药学学报. 2019, 21(2): 227-232.
XU P, KANG T, ZHANG Y, et al. Characterization of lecithin tank mixing adjuvant and synergistic effect with sulfoxaflor on the control of rice planthopper[J]. Chinese Journal of Pesticide Science. 2019, 21(2): 227-232.
23
王成菊, 张文吉, 李学锋, 等. 油类助剂在除草剂中应用及开发前景[J]. 精细化工, 2002(S1): 91-93, 105.
WANG C, ZHANG W, LI X, et al. Oil-based adjuvants for herbicides: Application and development trend[J]. Fine Chemicals, 2002(S1): 91-93, 105.
24
中华人民共和国农业部农药检定所. 农药田间药效试验准则(一)杀虫剂防治水稻鳞翅目钻蛀性害虫: GB/T 17980.1—2000[S]// 北京: 中国标准出版社, 2000.
Institute for the Control of Agrochemicals of the People's Republic of China. Pesticide—Guidelines for the field efficacy trials(I)—Insecticides against borer pests of Lepidoptera on rice: GB/T 17980.1—2000[S]// Beijing: Standards Press of China, 2000.
25
王颉. 试验设计与SPSS应用[M]. 北京: 化学工业出版社, 2007: 172-178.
WANG J. Experiment design and the application of SPSS[M]. Beijing: Chemical Industry Press, 2007: 172-178.
26
郑启帅, 岑海燕, 方慧, 等. 植保无人机喷施液滴润湿性探究[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 407-413.
ZHENG Q, CEN H, FANG H, et al. Research on wettability of spraying droplet with unmanned aerial vehicle[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 407-413.
27
邹祎. SPSS软件单因素方差分析的应用[J]. 价值工程, 2016, 35(34): 219-222.
ZOU Y. The analysis of single-factor variance by SPSS[J]. Value Engineering, 2016, 35(34): 219-222.
28
吴玉娥, 李静, 郑坤明, 等. UPLC-HRMS法探究氯虫苯甲酰胺在水稻植株中的内吸传导特性[J]. 农药, 2017, 56(3): 176-179.
WU Y, LI J, ZHENG K, et al. The systemic properties of chlorantraniliprole in rice plant by UPLC-HRMS[J]. Agrochemicals, 2017, 56(3): 176-179.
29
谭海军. 新型邻甲酰氨基苯甲酰胺类杀虫剂四氯虫酰胺[J]. 世界农药, 2019, 41(5): 60-64.
TAN H. New anthranilic diamide insecticide tetrachlorantraniliprole[J]. World Pesticide, 2019, 41(5): 60-64.
30
GUO L. Synthesis and properties of a glucono- δ -lactone- modified silicone surfactant from high-amine- value amodimethicone[J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2019.
31
袁会珠, 陈万权, 杨代斌, 等. 药液浓度、雾滴密度与氧乐果防治麦蚜的关系研究[J]. 农药学学报. 2000(1): 58-62.
YUAN H, CHEN W, YANG D, et al. Relationship between the efficacy of wheat aphids control and the omethoate concentration, droplets density[J]. Chinese Journal of Pesticide Science, 2000(1): 58-62.
32
NAHIYOON S A, CUI L, YANG D, et al. Biocidal radiuses of cycloxaprid, imidacloprid and lambda‐cyhalothrin droplets controlling against cotton aphid (Aphis gossypii) using an unmanned aerial vehicle[J]. Pest Management Science, 2020, 76(9): 3020-3029.

基金

2020广东省乡村振兴战略专项(2020KJ261)
广东省科技计划项目(2021B1212040009)
广东省基础与应用基础研究基金(2020A1515110214)
PDF(877 KB)

文章所在专题

智慧农业

121

Accesses

0

Citation

Detail

段落导航
相关文章

/