
植保无人机飞防助剂与杀虫剂的混配方式对二化螟防治效果影响研究
Effects on Control Efficacy of Pesticide-Adjuvants Mixture against Rice Chilo Suppressalis(walker) Based on Plant Protection Unmanned Aerial Vehicle
为探究飞防助剂类型与杀虫剂的混配方式对水稻二化螟防治效果的影响,本研究以杀虫剂(10%甲维∙茚虫威SC、5%氯虫苯甲酰胺SC和0.8%鱼藤酮SC)、飞防助剂(有机硅助剂、矿物油助剂和卵磷脂助剂)、施药液量(21、24和27 L/hm2)为因素设计了3因素3水平的L9(34)正交试验,通过方差分析(ANOVA)方法对各因素的显著性水平进行了分析。结果表明,在本研究的试验条件下,施药后第14天,杀虫剂对水稻二化螟防治效果有显著性影响(P<0.05),飞防助剂对水稻二化螟防效有极显著影响(P<0.01);在设定的施药液量范围内(21~27 L/hm2),施药液量对水稻二化螟防效无显著性影响。混配方式7(0.8%鱼藤酮SC、有机硅助剂和27 L/hm2施药液量)具有较好的速效性与持效性,施药后第14天的防效达81.45%;混配方式4(5%氯虫苯甲酰胺SC、有机硅助剂和24 L/hm2施药液量)持效性显著,施药后第14天的防效为79.30%。本研究成果可为防治水稻二化螟的药液混配方式提供参考。
To explore the effect of pesticide-adjuvants mixture on the control efficacy against Rice Chilo Suppressalis(walker). This study designed a three-factor, three-level orthogonal experiments with pesticides (10% emamectin benzoate·indoxacard SC, 5% chlorantraniliprole SC and 0.8% rotenone SC), adjuvants(organosilicon, lecithin and mineral Oil) , spray volume (21,24 and 27 L/hm2), referred to the three-factor, three-level orthogonal experimental scheme. And made the blank factor the deviation to analyze its rationality. Analysis of variance (ANOVA) statistical method was used to analyze the significance level of each factor. Duncan's new multiple range test (DMRT) method was used to analyze the order of the influence of different levels of each factor on the control efficacy against Rice Chilo Suppressalis(walker). The results showed that, under the experiment conditions of this research, the mean square value of the deviation factor was smaller than the mean square value of the pesticides, the adjuvants and the spray volume, and the deviation of the orthogonal experiment was within a reasonable range. The main order of the effect of the three factors on the control efficacy of Rice Chilo Suppressalis(walker) was: adjuvants > pesticides > spray volumn. On the 14th day after spraying, pesticides showed a significant effect on the control efficacy (P<0.05) and adjuvants showed a highly significant effect on the control efficacy (P<0.01), and spray volume showed no significant effect on the control efficacy. On the 14th day after spraying, the level 3 of the factor "pesticides" was more effective, in the order of Rotenone > Chlorantraniliprole > Emamectin Benzoate·Indoxacard. The level 1 of the factor "adjuvants" was more effective, in the order of Organosilicon > Lecithin > Mineral Oil. The level 3 of the factor "spray volume" was more effective, in the order of 27 L/hm2 > 24 L/hm2 > 21 L/hm2. Therefore, a preferred pesticide-adjuvants mixture method was 0.8% rotenone SC, organosilicon adjuvants and 27 L/hm² of spray volume, which had a rapid and long-lasting control efficacy, and its control efficacy in the field reached 81.45% on the 14th day after spraying. Additionally, there was also a satisfactory pesticide-adjuvants mixture method that was 5% Chlorantraniliprole, organosilicon adjuvants and 24 L/hm² of spray volume. This mixture method also performed well, achieving 79.3% control efficacy in the field on the 14th day after spraying. This study could provide a reference for the optimization of the mixture methods of solutions (pesticides, adjuvants and spray volume) for controlling Rice Chilo Suppressalis(walker).
植保无人机 / 二化螟 / 飞防助剂 / 杀虫剂 / 防治效果 {{custom_keyword}} /
plant protection UAV / Rice Chilo Suppressalis (walker) / adjuvants / pesticide / control efficacy {{custom_keyword}} /
表1 二化螟防治试验因素和水平表Table 1 The experimental factors and levels about controlling Chilo Suppressalis(walker) |
水平 | 因素 | ||
---|---|---|---|
杀虫剂 | 飞防助剂 | 施药液量/(L·hm-2) | |
1 | EBI | Organosilicon | 21 |
2 | CHI | Mineral Oil | 24 |
3 | ROT | Lecithin | 27 |
表2 L9(34)正交试验方案Table 2 L9(34) Orthogonal experimental scheme |
混配方式 | 杀虫剂 | 飞防助剂 | 施药液量/(L·hm-2) | 误差 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 |
4 | 2 | 1 | 2 | 3 |
5 | 2 | 2 | 3 | 1 |
6 | 2 | 3 | 1 | 2 |
7 | 3 | 1 | 3 | 2 |
8 | 3 | 2 | 1 | 3 |
9 | 3 | 3 | 2 | 1 |
表3 Duncan's新复极差法对试验因素与防治效果的方差分析结果Table 3 The results of ANOVA about experimental factors and control efficacy by Duncan's new multiple range test |
因素 | 施药后第6天防治效果 | 施药后第10天防治效果 | 施药后第14天防治效果 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
均方 | F值 | P值 | 显著性 | 均方 | F值 | P值 | 显著性 | 均方 | F值 | P值 | 显著性 | |
杀虫剂 | 86.90 | 20.9 | 0.046 | * | 61.50 | 17.5 | 0.054 | NS | 65.97 | 80.0 | 0.012 | * |
飞防助剂 | 98.96 | 23.8 | 0.040 | * | 99.23 | 28.3 | 0.034 | * | 94.43 | 114.5 | 0.009 | ** |
施药液量 | 1.89 | 0.5 | 0.687 | NS | 0.02 | 0.0 | 0.994 | NS | 0.20 | 0.2 | 0.809 | NS |
误差 | 1.58 | / | / | / | 0.01 | / | / | / | 0.13 | / | / | / |
表4 施药后第14天防治效果的Duncan多重比较表Table 4 Duncan multiple comparison table of the factors for control efficacy 14 d after spraying |
个案数 | 杀虫剂(水平) | 子集 | 飞防助剂(水平) | 子集 | 施药液量(水平)/(L·hm-2) | 子集 |
---|---|---|---|---|---|---|
3 | EBI(1) | 66.1 a | Mineral Oil(2) | 67.7 a | 21(1) | 71.2 a |
3 | CHI(2) | 73.2 b | Lecithin(3) | 68.7 a | 24(2) | 71.4 a |
3 | ROT(3) | 75.0 b | Organosilicon(1) | 77.9 b | 27(3) | 71.7 a |
1 |
姜卫华. 二化螟的抗药性及综合防治研究[D].南京: 南京农业大学, 2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
何月平. 二化螟抗药性监测及治理与高毒农药替代药剂筛选研究[D]. 南京: 南京农业大学, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
张俊杰. 水稻二化螟赤眼蜂寄生效果评价及其滞育机制研究[D]. 长春: 东北师范大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
罗锡文, 廖娟, 胡炼, 等. 提高农业机械化水平促进农业可持续发展[J]. 农业工程学报, 2016, 32(1): 1-11.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
陈盛德. 植保无人机在水稻喷施中的雾滴沉积机理及作业参数研究[D].广州: 华南农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
FAI AL B S,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
盛辉. 环境作业变量对植保无人机喷雾参数的及田间防效验证[D]. 合肥: 安徽农业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
陈吟, 齐浩亮, 张龙, 等. 大田环境中不同助剂和喷头对无人机喷洒雾滴分布和漂移的影响[J]. 华南农业大学学报, 2020, 41(6): 50-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
张宗俭, 张春华, 李小龙. 桶混助剂的研发应用与发展趋势[J]. 现代农药, 2021, 20(1): 19-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
张宏军, 武鹏, 吴进龙, 等. 农用飞防专用制剂的现状与发展[J]. 农药科学与管理, 2018, 39(5): 13-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
王斌, 司乃国, 郭静, 等. 不同助剂对嘧菌酯防治3种植物病害的增效作用[J]. 农药学学报, 2020, 22(2): 293-298.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
洪峰, 潘惠文, 赵云峰, 等. 四氯虫酰胺混用不同助剂防治二化螟效果试验[J]. 黑龙江农业科学, 2016(6): 58-60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
杨望明, 田良元, 滕永梅, 等. 生物助剂安融乐对水稻二化螟减药控害增效作用试验[J]. 湖北植保, 2018(6): 24-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
孙梅梅, 谌江华, 任少鹏. 添加助剂对无人机喷雾技术防治水稻害虫的效果评价[J]. 湖南农业科学, 2019(9): 55-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
聂太礼, 程慧煌, 吴珍平, 等. 棉花应用大疆T16无人机飞防的操作技术要点[J]. 棉花科学, 2020, 213(6): 39-42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
王少丽, 朱国仁, 张友军. 农用有机硅喷雾助剂在害虫化学防治中的应用[J]. 长江蔬菜, 2010(18): 112-115.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
徐鹏飞, 康廷浩, 张园, 等. 卵磷脂桶混助剂的特性及其在防治稻飞虱中对氟啶虫胺腈的协同增效作用[J]. 农药学学报. 2019, 21(2): 227-232.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
王成菊, 张文吉, 李学锋, 等. 油类助剂在除草剂中应用及开发前景[J]. 精细化工, 2002(S1): 91-93, 105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
中华人民共和国农业部农药检定所. 农药田间药效试验准则(一)杀虫剂防治水稻鳞翅目钻蛀性害虫: GB/T 17980.1—2000[S]// 北京: 中国标准出版社, 2000.
Institute for the Control of Agrochemicals of the People's Republic of China. Pesticide—Guidelines for the field efficacy trials(I)—Insecticides against borer pests of Lepidoptera on rice: GB/T 17980.1—2000[S]// Beijing: Standards Press of China, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
王颉. 试验设计与SPSS应用[M]. 北京: 化学工业出版社, 2007: 172-178.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
郑启帅, 岑海燕, 方慧, 等. 植保无人机喷施液滴润湿性探究[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 407-413.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
邹祎. SPSS软件单因素方差分析的应用[J]. 价值工程, 2016, 35(34): 219-222.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
吴玉娥, 李静, 郑坤明, 等. UPLC-HRMS法探究氯虫苯甲酰胺在水稻植株中的内吸传导特性[J]. 农药, 2017, 56(3): 176-179.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
谭海军. 新型邻甲酰氨基苯甲酰胺类杀虫剂四氯虫酰胺[J]. 世界农药, 2019, 41(5): 60-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
袁会珠, 陈万权, 杨代斌, 等. 药液浓度、雾滴密度与氧乐果防治麦蚜的关系研究[J]. 农药学学报. 2000(1): 58-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |