基于无人机图像以及不同机器学习和深度学习模型的小麦倒伏率检测

智慧农业(中英文). 2021, 3(2): 23-34

PDF(1857 KB)
PDF(1857 KB)
智慧农业(中英文) ›› 2021, Vol. 3 ›› Issue (2) : 23-34. DOI: 10.12133/j.smartag.2021.3.2.202104-SA003

基于无人机图像以及不同机器学习和深度学习模型的小麦倒伏率检测

作者信息 +

Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms

Author information +
History +

本文亮点

小麦在生长过程中发生倒伏会严重影响其产量,因此实时且准确地对小麦倒伏状况监测有很重要的意义。传统的方法采用手工方式生成数据集,不仅效率低、易出错,而且生成的数据集不准确。针对这一问题,本研究提出了一种基于图像处理的自动数据集生成方法。首先利用无人机在15、46和91 m三个高度采集图像数据;采集完数据后,根据无倒伏、倒伏面积<50%和倒伏面积>50%的标准对每一块地的小麦倒伏情况进行人工评估;采用三种机器学习(支持向量机、随机森林、K近邻)和三种深度学习(ResNet101、GoogLeNet、VGG16)算法对小麦倒伏检测情况进行分类。结果显示,ResNet101的分类结果优于随机森林,并且在91 m高度采集的数据分类精度并不低于在15 m高度采集的数据。本研究证明了针对在91 m高度采集的无人机图像,采用ResNet101对小麦倒伏率检测是一种有效的替代人工检测的方法,其检测精度达到了75%。

HeighLight

Wheat lodging is a negative factor affecting yield production. Obtaining timely and accurate wheat lodging information is critical. Using unmanned aerial systems (UASs) images for wheat lodging detection is a relatively new approach, in which researchers usually apply a manual method for dataset generation consisting of plot images. Considering the manual method being inefficient, inaccurate, and subjective, this study developed a new image processing-based approach for automatically generating individual field plot datasets. Images from wheat field trials at three flight heights (15, 46, and 91 m) were collected and analyzed using machine learning (support vector machine, random forest, and K nearest neighbors) and deep learning (ResNet101, GoogLeNet, and VGG16) algorithms to test their performances on detecting levels of wheat lodging percentages: non- (0%), light (<50%), and severe (>50%) lodging. The results indicated that the images collected at 91 m (2.5 cm/pixel) flight height could yield a similar, even slightly higher, detection accuracy over the images collected at 46 m (1.2 cm/pixel) and 15 m (0.4 cm/pixel) UAS mission heights. Comparison of random forest and ResNet101 model results showed that ResNet101 resulted in more satisfactory performance (75% accuracy) with higher accuracy over random forest (71% accuracy). Thus, ResNet101 is a suitable model for wheat lodging ratio detection. This study recommends that UASs images collected at the height of about 91 m (2.5 cm/pixel resolution) coupled with ResNet101 model is a useful and efficient approach for wheat lodging ratio detection.

引用本文

导出引用
Paulo FLORES , Zhao ZHANG. 基于无人机图像以及不同机器学习和深度学习模型的小麦倒伏率检测. 智慧农业. 2021, 3(2): 23-34 https://doi.org/10.12133/j.smartag.2021.3.2.202104-SA003
Paulo FLORES , Zhao ZHANG. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms. Smart Agriculture. 2021, 3(2): 23-34 https://doi.org/10.12133/j.smartag.2021.3.2.202104-SA003

参考文献

1
BALFOURIER F, BOUCHET S, ROBERT S, et al. Worldwide phylogeography and history of wheat genetic diversity[J]. Science Advances, 2019, 5(5): ID 0536.
2
SHEWRY P R, HEY S J. The contribution of wheat to human diet and health[J]. Food Energy Security, 2015, 4(3): 178-202.
3
STATISTA. Global wheat production from 2011/2012 to 2020/2021[EB/OL]. (2021-03-05)[2021-03-30].
4
JAHAN N, FLORES P, LIU Z, et al. Detecting and distinguishing wheat diseases using image processing and machine learning algorithms[C]// 2020 ASABE Annual International Virtual Meeting. St. Joseph, MI: ASABE, U.
S., 2020.
5
MONDAL S, RUTKOSKI J E, VELU G, et al. Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches[J]. Frontiers in Plant Science, 2016, 7: ID 991.
6
WEBBER H, EWERT F, OLESEN J E, et al. Diverging importance of drought stress for maize and winter wheat in Europe[J]. Nature Communications, 2018, 9(1): 1-10.
7
ZHANG Z, FLORES P, IGATHINATHANE C, et al. Wheat lodging detection from UAS imagery using machine learning algorithms[J]. Remote Sensing, 2020, 12(11): ID 1838.
8
CHAUHAN S, DARVISHZADEH R, BOSCHETTI M, et al. Remote sensing-based crop lodging assessment: Current status and perspectives[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,151: 124-140.
9
WU W, MA B L. A new method for assessing plant lodging and the impact of management options on lodging in canola crop production[J]. Scientific Reports, 2016, 6(1): 1-17.
10
SETTER T L, LAURELES E V, MAZAREDO A M. Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis[J]. Field Crops Research, 1997, 49: 95-106.
11
PINTHUS M J. Lodging in wheat, barley, and oats: the phenomenon, its causes, and preventive measures[J]. Advanced Agronomy, 1974, 25: 209-263.
12
ISLAM M S, PENG S, VISPERAS R M, et al. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem[J]. Field Crops Research, 2007, 101(2): 240-248.
13
ZHANG Z, HEINEMANN P H, LIU J, et al. The development of mechanical apple harvesting technology: A review[J]. Transactions of the ASABE, 2016, 59(5): 1165-1180.
14
ZHANG Z, POTHULA A, LU R. Improvements and evaluation of an infield bin filler for apple bruising and distributions[J]. Transactions of the ASABE, 2019, 62(2): 271-280.
15
ZHANG Z, IGATHINATHANE C, LI J, et al. Technology progress in mechanical harvest of fresh market apples[J]. Computers and Electronics in Agriculture, 2020, 175: ID 105606.
16
LU R, POTHULA A, MIZUSHIMA A, et al. System for sorting fruit: 9919345[P]. 2018-03-20.
17
ZHANG Z, LU Y, LU R. Development and evaluation of an apple infield grading and sorting system[J]. Postharvest Biology and Technology, 2021, 180: ID 111588.
18
YAO L, HU D, ZHAO C, et al. Wireless positioning and path tracking for a mobile platform in greenhouse[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(1): 216-223.
19
FLORES P, ZHANG Z, IGATHINATHANE C. et al. Distinguishing seedling volunteer corn from soybean through greenhouse color, color-infrared, and fused images using machine and deep learning[J]. Industrial Crops and Products, 2021, 161: ID 113223.
20
FISCHER R A, STAPPER M. Lodging effects on high-yielding crops of irrigated semidwarf wheat[J]. Field Crops Research, 1987, 17: 245-258.
21
PIÑERA-CHAVEZ F J, BERRY P M, FOULKES M J, et al. Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements[J]. Field Crops Research, 2016, 196: 325-336.
22
YANG M D, HUANG K S, KUO Y H, et al. Spatial and spectral hybrid image classification for rice lodging assessment through UAV imagery[J]. Remote Sensing, 2017, 9(6): ID 583.
23
YANG H, CHEN E, LI Z, et al. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34: 157-166.
24
ZHAO L, YANG J, LI P, et al. Characterizing lodging damage in wheat and canola using Radarsat-2 polarimetric SAR data[J]. Remote Sensing Letter, 2017, 8(7): 667-675.
25
VARGAS J Q, KHOT L R, PETERS R T, et al. Low orbiting satellite and small UAS-based high-resolution imagery data to quantify crop lodging: A case study in irrigated spearmint[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(5): 755-759.
26
CHAUHAN S, DARVISHZADEH R, LU Y, et al. Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data[J]. Remote Sensing of Environment, 2020, 243: ID 111804.
27
CHU T, STAREK M J, BREWER M J, et al. Assessing lodging severity over an experimental maize (Zea mays L.) field using UAS images[J]. Remote Sensing, 2017, 9(9): ID 923.
28
RAJAPAKSA S, ERAMIAN M, DUDDU H, et al. Classification of crop lodging with gray level co-occurrence matrix[C]// 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway, New York, USA: IEEE, 2018: 251-258.
29
LI X, LI X, LIU W, et al. A UAV-based framework for crop lodging assessment[J]. European Journal of Agronomy, 2021, 123: ID 126201.
30
MARDANISAMANI S, MALEKI F, HOSSEINZADEH K, et al. Crop lodging prediction from UAV-acquired images of wheat and canola using a DCNN augmented with handcrafted texture features[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, New York, USA: IEEE, 2019.
31
ABALLA A, CEN H, WAN L, et al. Nutrient status diagnosis of infield oilseed rape via deep learning-enabled dynamic model[J]. IEEE Transactions on Industrial Informatics, 2020, 17(6): 4379-4389.
32
FLORES P, ZHANG Z, JITHIN M, et al. Distinguishing volunteer corn from soybean at seedling stage using images and machine learning[J]. Smart Agriculture, 2020, 2(3): 61-74.
PDF(1857 KB)

文章所在专题

小麦

智慧农业

117

Accesses

0

Citation

Detail

段落导航
相关文章

/