
蛋鸡设施养殖环境质量评价预测模型构建方法及性能测试
Construction Method and Performance Test of Prediction Model for Laying Hen Breeding Environmental Quality Evaluation
蛋鸡设施养殖环境质量对蛋鸡的健康生长和生产性能的提升至关重要。蛋鸡养殖环境是多环境因子相互影响制约的复杂非线性系统,凭借单一的养殖环境参数难以对环境质量做出准确有效的评价。针对上述问题,本研究综合蛋鸡设施养殖环境的温度、湿度、光照强度、氨气浓度等多个环境影响因子,在布谷鸟搜索算法优化神经网络(CS-BP)预测模型的基础上,构建了改进的CS-BP的蛋鸡设施养殖环境质量评价预测模型。将构建的改进CS-BP预测模型与BP神经网络、遗传算法优化BP神经网络(GA-BP)、粒子群算法优化BP神经网络(PSO-BP)3种深度学习方法进行性能参数分析比对,结果表明:改进CS-BP评价预测模型的平均绝对误差(MAE)、平均相对误差(MAPE)和决定系数(R 2)分别为0.0865、0.0159和0.8569,其各项指标性能均优于上述3种对比模型,该模型具有较强的模型泛化能力和较高的预测精度。对改进CS-BP的蛋鸡设施养殖环境质量评价模型进行测试,其分类准确率达0.9333以上。本研究构建的模型可以为蛋鸡设施养殖环境质量提供更加全面有效的科学评价,对实现蛋鸡生产环境的最优控制,促进蛋鸡生产性能的提升具有重要意义。
Environmental quality of facilities affects the healthy growth and production of laying hens. The breeding environment of laying hens is a complex and non-linear system in which multiple environmental factors interact and restrict each other. It is difficult to make an accurate and effective evaluation on the suitability of laying hens with a single breeding environment parameter. In order to solve the above problem, an improved cuckoo search algorithm optimization neural network (CS-BP) model for the evaluation and prediction of the environmental suitability of laying hen facility was proposed in this research. In this model, the effects of environmental factors such as temperature, humidity, light intensity and ammonia concentration were comprehensively analyzed, and the problem of high prediction accuracy caused by BP neural network easily falling into local minimum value was overcome. In the experiment, the model was compared with BP neural network, genetic algorithm optimized BP neural network (GA-BP) and particle swarm optimization BP neural network (PSO-BP). The results showed that the mean absolute error (MAE), mean relative error (MAPE) and the coefficient of determination (R 2) of the prediction model based on the improved CS-BP were 0.0865, 0.0159 and 0.8569, respectively. The prediction model based on the improved CS-BP had a strong generalization ability and a high testing precision, and its index performance was better than the above three comparison models. The classification accuracy of the improved CS-BP model was tested, and the result was 0.9333. The model constructed in this research can provide more comprehensive and effective scientific evaluation for the environmental quality of laying hens facility, which is of great significance to realize the optimal control of the production environment and promote the production performance of layers.
蛋鸡设施养殖 / 环境质量评价 / 布谷鸟搜索算法优化神经网络(CS-BP) / 遗传算法优化BP神经网络(GA-BP) / 粒子群算法优化BP神经网络(PSO-BP) / 深度学习 / 多环境因子 {{custom_keyword}} /
facility breeding for laying hens / environmental quality evaluation / CS-BP / GA-BP / PSO-BP / deep learning / multiple environmental factors {{custom_keyword}} /
1:begin 2:目标函数f(x), x = (x1, ... , xd)T 初始化种群的n个鸟巢 xi (i = 1, 2, ..., n) 3:while (t <最大迭代次数) or (算法终止规则) 4: for 劣解种群中的解do 5: 对xi执行Lévy飞行并产生新解 xnew,i 6: xi→xnew, i 7: fi→fnew, i 8: end for 9: for 优解种群中的解 do 10: 对xj执行梯度下降并产生新解 xnew,j 11: xj→xnew, j 12:fj→fnew, j 13: end for 部分劣解 ( 寻找种群中最优解 14: end while 输出最优解 将最优解做为BP神经网络初始权值阈值 输出网络模型net及误差值 15:end |
表1 蛋鸡设施养殖环境质量等级划分表Table 1 Classification of environmental suitability of laying hens facility breeding environment |
质量评价等级 | 温度/℃ | 湿度/% | 光照强度/lx | NH3浓度/(mg‧m-3) |
---|---|---|---|---|
5级(优) | 20~25 | 60~70 | 28~30 | <15 |
4级(良) | 18~20或25~26 | 55~60或70~75 | 20~28或30~35 | 15~17 |
3级(一般) | 14~18或26~27 | 50~55或75~78 | 15~20或35~40 | 17~18 |
2级(差) | 10~14或27~30 | 40~50或78~80 | 10~15或40~50 | 18~25 |
1级(极差) | <10或>30 | <40或>80 | <10或>50 | >25 |
表2 部分试验数据Table 2 Part of experimental data |
温度/℃ | 湿度/% | 光照强度/lx | NH3浓度/(mg‧m-3) | 质量评价等级 |
---|---|---|---|---|
14.3 | 54 | 19 | 18 | 3 |
9.2 | 39 | 63 | 26 | 1 |
9.8 | 37 | 51 | 28 | 1 |
18.8 | 58 | 27 | 15 | 4 |
19.5 | 58 | 28 | 16 | 4 |
22.3 | 61 | 29 | 10 | 5 |
19.4 | 58 | 21 | 16 | 4 |
14.7 | 50 | 19 | 17 | 3 |
19.6 | 58 | 29 | 16 | 4 |
18.3 | 57 | 22 | 17 | 4 |
表3 基于CS-BP的预测模型的试验结果Table 3 Experimental results of prediction model based on CS-BP neural network |
试验号 | MAE | MAPE | R 2 |
---|---|---|---|
1 | 0.9113 | 0.0181 | 0.8116 |
2 | 0.9120 | 0.0175 | 0.8324 |
3 | 0.9131 | 0.0178 | 0.8231 |
4 | 0.9253 | 0.0188 | 0.7980 |
5 | 0.8929 | 0.0172 | 0.8449 |
6 | 0.9011 | 0.0177 | 0.8246 |
7 | 0.8744 | 0.0169 | 0.8564 |
8 | 0.8913 | 0.0171 | 0.8392 |
9 | 0.7913 | 0.0153 | 0.8793 |
10 | 0.9103 | 0.0186 | 0.8160 |
平均值 | 0.8923 | 0.0175 | 0.8326 |
表4 基于改进CS-BP的预测模型的实验结果Table 4 Experimental results of prediction model based on improved CS-BP neural network |
试验号 | MAE | MAPE | R 2 |
---|---|---|---|
1 | 0.9394 | 0.0184 | 0.8300 |
2 | 0.8091 | 0.0159 | 0.8616 |
3 | 0.8714 | 0.0171 | 0.8559 |
4 | 0.7825 | 0.0155 | 0.8869 |
5 | 0.9020 | 0.0177 | 0.8261 |
6 | 0.8913 | 0.0170 | 0.8416 |
7 | 0.9124 | 0.0175 | 0.8430 |
8 | 0.9129 | 0.0179 | 0.8364 |
9 | 0.9031 | 0.0180 | 0.8551 |
10 | 0.7710 | 0.0151 | 0.8796 |
平均值 | 0.8695 | 0.0170 | 0.8512 |
图4 基于BP的蛋鸡设施养殖环境质量预测评价结果输出Fig.4 Prediction and evaluation results of environmental suitability of laying hens facility breeding environment based on BP |
图5 基于GA-BP的蛋鸡设施养殖环境质量预测评价结果输出Fig. 5 Prediction and evaluation results of environmental suitability of laying hens facility breeding environment based on GA-BP |
图6 基于PSO-BP的蛋鸡设施养殖环境质量预测评价结果输出Fig.6 Prediction and evaluation results of environmental suitability of laying hens facility breeding environment based on PSO-BP |
表5 四种蛋鸡设施养殖环境质量评价预测模型性能分析Table 5 Performance analysis results of the four hens breeding facility environmental quality evaluation prediction model |
指标 | BP | GA-BP | PSO-BP | 改进CS-BP |
---|---|---|---|---|
MAE | 0.1701 | 0.1100 | 0.0913 | 0.0865 |
MAPE | 0.0421 | 0.0301 | 0.0165 | 0.0159 |
R 2 | 0.7125 | 0.7911 | 0.8316 | 0.8569 |
表6 蛋鸡设施养殖环境质量评价预测模型测试结果Table 6 Test results of environmental suitability prediction model of laying hens facility breeding environment |
环境质量等级 | 样本总数/个 | 分类正确样本数/个 | 分类错误样本数/个 | 准确率 |
---|---|---|---|---|
1 | 60 | 57 | 3 | 0.9500 |
2 | 60 | 56 | 4 | 0.9333 |
3 | 60 | 57 | 3 | 0.9500 |
4 | 60 | 58 | 2 | 0.9667 |
5 | 60 | 56 | 4 | 0.9333 |
1 |
李保明, 王阳, 郑炜超. 我国规模化养鸡环境控制技术的最新进展[J]. 中国家禽, 2019, 41(9): 1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
滕光辉. 畜禽设施精细养殖中信息感知与环境调控综述[J]. 智慧农业, 2019, 1(3): 1-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
赵一广, 杨亮, 郑姗姗, 等. 家畜智能养殖设备和饲喂技术应用研究现状与发展趋势[J]. 智慧农业, 2019, 1(1): 20-31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
左玲玲. 我国生猪生产发展政策措施[J]. 兽医导刊, 2017(7): 17-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
周可嘉. 现代化超大规模蛋鸡舍冬春季环境参数控制综合评价研究[D]. 杨凌: 西北农林科技大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
谢秋菊, 苏中滨,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
陈冲, 刘星桥, 刘超吉, 等. 哺乳母猪舍环境舒适度评价预测模型优化[J]. 农业机械学报, 2020, 51(8): 311-319.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
陈伟宏, 安吉尧, 李仁发, 等. 深度学习认知计算综述[J]. 自动化学报, 2017, 43(11): 1886-1897.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
MIRZAEE-GHALEH,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
李若飞, 魏萍, 敖长林, 等. 鸡舍环境细菌的神经网络模型相关分析[J]. 现代畜牧兽医, 2009(6): 65-68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
易姣红. 基于布谷鸟搜索算法优化神经网络的研究[D]. 长沙: 长沙理工大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
刘先旺, 李华龙, 李淼, 等. 基于CS和BP的鸡舍环境与产蛋性能关系模型研究[J]. 江苏农业科学, 2019, 47(11): 267-270.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
李华龙, 李淼, 詹凯, 等. 基于物联网的层叠式鸡舍环境智能监控系统[J]. 农业工程学报, 2015, 31(S2): 210-215.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
中华人民共和国农业部. 畜禽场环境质量标准: NY/T 388-1999[S]. 北京: 中国标准出版社, 2000.
Ministry of Agriculture of the People's Republic of China. Environmental quality standards for livestock farms: NY/T 388-1999[S]. Beijing: Standards Press of China, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
王阳, 石海鹏, 王雅韬, 等. 侧墙进风小窗位置对蛋鸡舍内环境的影响[J]. 中国家禽, 2016, 38(16): 38-42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |