基于红边优化植被指数的寒地水稻叶片叶绿素含量遥感反演研究

于丰华, 许童羽, 郭忠辉, 杜文, 王定康, 曹英丽

智慧农业(中英文). 2020, 2(1): 77-86

PDF(1328 KB)
PDF(1328 KB)
智慧农业(中英文) ›› 2020, Vol. 2 ›› Issue (1) : 77-86. DOI: 10.12133/j.smartag.2020.2.1.201911-SA003
专题--农业遥感与表型信息获取分析

基于红边优化植被指数的寒地水稻叶片叶绿素含量遥感反演研究

作者信息 +

Remote sensing inversion of chlorophyll content in rice leaves in cold region based on Optimizing Red-edge Vegetation Index (ORVI)

Author information +
History +

本文亮点

水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥的核心要素。本研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数的构造方法和形式,利用相关性分析、连续投影法、遗传算法优化的粗糙集属性简约法进行高光谱特征选择,提出了仅含有695、507和465nm 3个高光谱特征波段的红边优化指数(ORVI)。与Index Data Base数据库中其他用于叶绿素含量反演植被指数,包括ND528,587、SR440,690、CARI、MCARI的反演结果进行了对比分析,结果表明:IDB数据库中的已有4种植被指数叶绿素含量反演模型的决定系数R2分别为0.672、0.630、0.595和0.574;ORVI植被所建立的叶绿素含量反演模型的决定系数R2为0.726,均方根误差RMSE为2.68,精度高于其他植被指数,说明了ORVI在实际的应用中,能够作为快速反演水稻叶绿素含量的高光谱植被指数。本研究能够为寒地水稻叶绿素含量高光谱遥感诊断及管理决策提供一定的客观数据支撑和模型参考。

HeighLight

Rice is one of the important staple crops in China, and the rice planted in Northeast China, such as in Liaoning, Jilin, and Heilongjiang regions, is called cold-region rice. The chlorophyll content in rice leaves is the most direct indicator of the rice growth period and can directly reflect on its nutritional value. Previous research demonstrates that when the chlorophyll content of rice changes, the reflectance of different bands changes at the spectral level. In addition, most of the research studies on the inversion of the rice’s chlorophyll content are based on the complex machine learning algorithms. Although the accuracy of the inversion of the constructed model has been improved, the structure of the model is relatively complex, and the model’s transplantation and universality are poor in the actual application process. Hence, in this study, the inversion of the chlorophyll content of rice leaves in the cold regions was assessed. An ASD ground object spectrometer was employed to procure the hyperspectral information of rice leaves in the critical growth period. On the basis of the feature selection method, the hyperspectral feature subset of the inversion of the chlorophyll content of rice was selected. The characteristic band vegetation index was constructed by combining the chlorophyll content absorption coefficients, and the chlorophyll content of rice was established through using regression analysis. Additionally, by combining the chlorophyll content absorption coefficients in the PROSPECT model, referring to the construction method and form of the existing hyperspectral vegetation index, and using correlation analysis, the continuous projection method and the genetic algorithm optimized the rough set attribute reduction, the hyperspectral features was selected, and the red edge optimization index (ORVI) with only 695, 507, and 465nm hyperspectral feature bands was proposed. Compared with the other vegetation indexes retrieved from the IDB database, namely, ND528,587, SR440,690, CARI, and MCARI, the results demonstrated that the determination coefficients of the abovementioned vegetation index inversion models were 0.672, 0.630, 0.595, and 0.574 respectively. The accuracy of the inversion model of chlorophyll content established by ORVI vegetation was higher than that of other vegetation indexes wherein the decision coefficients of the model were R2 =0.726 and RMSE = 2.68, revealing that ORVI can be used as a hyperspectral vegetation index for the rapid inversion of the rice’s chlorophyll content in practical applications. This research can thereby provide some objective data support and model reference for remote sensing diagnosis and management decision of the rice’s chlorophyll content in the cold regions.

引用本文

导出引用
于丰华 , 许童羽 , 郭忠辉 , 杜文 , 王定康 , 曹英丽. 基于红边优化植被指数的寒地水稻叶片叶绿素含量遥感反演研究. 智慧农业. 2020, 2(1): 77-86 https://doi.org/10.12133/j.smartag.2020.2.1.201911-SA003
Fenghua Yu , Tongyu Xu , Zhonghui Guo , Wen Du , Dingkang Wang , Yingli Cao. Remote sensing inversion of chlorophyll content in rice leaves in cold region based on Optimizing Red-edge Vegetation Index (ORVI). Smart Agriculture. 2020, 2(1): 77-86 https://doi.org/10.12133/j.smartag.2020.2.1.201911-SA003

参考文献

1
常俊彦, 宋明阳, 于晓曼, 等. 沈阳地区水稻生产的生态环境影响研究[J]. 农业环境科学学报, 2018, 37(8): 249-257.
Chang J, Song M, Yu X, et al. Study on the ecological environment impact of rice production in shenyang area[J]. Journal of Agro-Environment Science, 2018, 37 (8): 249-257.
2
凌启鸿, 王绍华, 丁艳锋, 等. 关于用水稻“顶3顶4叶叶色差”作为高产群体叶色诊断统一指标的再论证[J]. 中国农业科学, 2017, 50(24): 42-50.
Ling Q, Wang S, Ding Y, et al. Further demonstration of using rice "top 3 top 4 leaf color difference" as a unified indicator for leaf color diagnosis in high-yielding populations[J]. Scientia Agricultura Sinica, 2017, 50 (24): 42-50.
3
裴信彪, 吴和龙, 马萍, 等. 基于无人机遥感的不同施氮水稻光谱与植被指数分析[J]. 中国光学, 2018, 11(5): 144-152.
Pei X, Wu H, Ma P, et al. Analysis of spectrum and vegetation index of different nitrogen-applied rice based on UAV remote sensing[J]. China Optics, 2018, 11 (5): 144-152.
4
何勇, 彭继宇, 刘飞, 等. 基于光谱和成像技术的作物养分生理信息快速检测研究进展[J]. 农业工程学报, 2015, 31(3): 182-197.
He Y, Peng J, Liu F, et al. Critical review of fast detection of crop nutrient nd physiological information ith spectral and imaging technology[J]. Transactions of the CASE, 2015, 31 (3): 182-197.
5
Arnal B J G. Detection of nutrition deficiencies in plants using proximal images and machine learning: a review[J]. Computers and Electronics in Agriculture, 2019, 162: 482-492.
6
Baek I, Kim M, Cho B K, et al. Selection of optimal hyperspectral wavebands for detection of discolored, diseased rice seeds[J]. Applied Sciences, 2019, 9(5): 1027-1038.
7
谢立勇, 孙雪, 赵洪亮, 等. FACE条件下水稻生育后期剑叶光合色素含量及产量构成的响应研究[J]. 中国生态农业学报, 2015, 23(4): 47-53.
Xie L, Sun X, Zhao H, et al. Response of photosynthetic pigment content and yield component of flag leaf in late growth stage of rice under FACE condition[J]. Chinese Journal of Eco-Agriculture, 2015, 23 (4): 47-53.
8
Yu F, Xu T, Du W, et al. Radiative transfer models (rtms) for field phenotyping inversion of rice based on uav hyperspectral remote sensing[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(4): 150-157.
9
Henrich V, Brüser K. Index Database[EB/OL]. Germany: The Idb Project. (2012-01-01) [2019-01-01].
10
刘桃菊, 胡雯君, 张笑东, 等. 水稻冠层高光谱特征变量与叶片叶绿素含量的相关性研究[J]. 激光生物学报, 2015, 24(5): 428-435.
Liu T, Hu W, Zhang X, et al. Correlation between rice canopy hyperspectral characteristic variables and chlorophyll content in leaves[J]. Laser Biology, 2015, 24 (5): 428- 435.
11
曹英丽, 邹焕成, 郑伟, 等. 水稻叶片高光谱数据降维与叶绿素含量反演方法研究[J]. 沈阳农业大学学报, 2019, 50(1): 107-113.
Cao Y, Zou H, Zheng W, et al. Study on dimensionality reduction and chlorophyll content inversion of rice leaf hyperspectral data[J]. Journal of Shenyang Agricultural University, 2019, 50 (1): 107-113.
12
谢凯, 蒋蘋, 罗亚辉. 稻瘟病胁迫下水稻叶片叶绿素含量与光谱特征参数的相关性研究[J]. 中国农学通报, 2017, 33(17): 123-128.
Xie K, Jiang P, Luo Y. Correlation between chlorophyll content and spectral characteristic parameters of rice leaves under rice blast stress[J]. Chinese Agricultural Science Bulletin, 2017, 33 (17): 123-128.
13
张建, 孟晋, 赵必权, 等. 消费级近红外相机的水稻叶片叶绿素(SPAD)分布预测[J]. 光谱学与光谱分析, 2018, 38(3): 79-86.
Zhang J, Meng J, Zhao B, et al. Prediction of chlorophyll (SPAD) distribution in rice leaves from consumer-grade near-infrared cameras[J]. Spectroscopy and Spectral Analysis, 2018, 38 (3): 79-86.
14
Stavrakoudis D, Katsantonis D, Kadoglidou K, et al. Estimating rice agronomic traits using drone-collected multispectral imagery[J]. Remote Sens, 2019, 11(5): 545-560.
15
Golhani K, Balasundram S K, Vadamalai G, et al. Estimating chlorophyll content at leaf scale in viroid-inoculated oil palm seedlings (Elaeis guineensis jacq.) using reflectance spectra (400nm-1050nm)[J]. International Journal of Remote Sensing, 2019, 40(19): 7647-7662.
16
李苑溪, 陈锡云, 罗达, 等. 铜胁迫下玉米叶片反射光谱的红边位置变化及其与叶绿素的关系[J]. 光谱学与光谱分析, 2018, 38(2): 220-225.
Li Y, Chen X, Luo D, et al. Red edge position change of corn leaf reflection spectrum under copper stress and its relationship with chlorophyll[J]. Spectroscopy and Spectral Analysis, 2018, 38 (2): 220-225.
17
冯海宽, 杨福芹, 杨贵军, 等. 基于特征光谱参数的苹果叶片叶绿素含量估算[J]. 农业工程学报, 2018, 34(6): 190-196.
Feng H, Yang F, Yang G, et al. Estimation of chlorophyll content in apple leaves based on characteristic spectral parameters[J]. Transactions of the CASE, 2018, 34 (6): 190-196.
18
兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2): 1-19.
Lan Y, Deng X, Zeng G. Research progress on UAV agricultural remote sensing in diagnosis of crop diseases, pests and weeds[J]. Smart Agriculture, 2019, 1 (2): 1-19.
19
裴信彪, 吴和龙, 马萍, 等. 基于无人机遥感的不同施氮水稻光谱与植被指数分析[J]. 中国光学, 2018, 11(05): 144-152.
Pei X, Wu H, Ma P, et al. Analysis of spectral and vegetation index of different nitrogen-fed rice based on UAV remote sensing[J]. China Optics, 2018, 11 (05): 144-152.
20
Xu Q, Ma Y, Jiang Q, et al. Hyperspectral remote sensing estimation of water content in rice leaves[J]. Remote Sensing Information, 2018, 33 (05): 5-12.
21
武旭梅, 常庆瑞, 落莉莉, 等. 水稻冠层叶绿素含量高光谱估算模型[J]. 干旱地区农业研究, 2019, 37(3): 238-243.
Wu X, Chang Q, Luo L, et al. Hyperspectral estimation model of rice canopy chlorophyll content[J]. Agricultural Research in the Arid Areas, 2019, 37(3): 238-243.
22
曹英丽, 邹焕成, 郑伟, 等. 水稻叶片高光谱数据降维与叶绿素含量反演方法研究[J]. 沈阳农业大学学报, 2019, 50(01): 107-113.
Cao Y, Zou H, Zheng W, et al. Study on the method of dimension reduction and chlorophyll content inversion from hyperspectral data of rice leaves[J]. Journal of Shenyang Agricultural University, 2019, 50 (1): 107-113.
23
Gao Y, Wu G, Wang F, et al. Feasibility of estimating heavy metal concentrations in wetland soil using hyperspectral technology[C]// IGARSS 2017 - 2017 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2017.
24
秦占飞, 常庆瑞, 申健, 等. 引黄灌区水稻红边特征及SPAD高光谱预测模型[J]. 武汉大学学报(信息科学版)2016, (8): 1168-1175.
Qin Z, Chang Q, Shen J, et al. Red edge characteristics and SPAD hyperspectral prediction model of rice in the yellow river irrigation area[J]. Geomatics and Information Science of Wuhan University, 2016, (8): 1168-1175.
25
Raymond H E, Daughtry C S T, Eitel J U H, et al. Remote sensing leaf chlorophyll content using a visible band index[J]. Agronomy Journal, 2011, 103(4): no. 1090.
26
Xu Q, Ma Y, Jiang Q, et al. Hyperspectral remote sensing estimation of water content in rice leaves[J]. Remote Sensing Information, 2018, 33 (05): 5-12.
27
王洋, 肖文, 邹焕成, 等. 基于PROSPECT模型的植物叶片干物质估测建模研究[J]. 沈阳农业大学学报, 2018, 49(1): 121-127.
Wang Y, Xiao W, Zou H, et al. Estimation and modeling of dry matter in plant leaves based on PROSPECT model[J]. Journal of Shenyang Agricultural University, 201849(1): 121-127.
28
Sun D, Cen H, Weng H, et al. Using hyperspectral analysis as a potential high throughput phenotyping tool in GWAS for protein content of rice quality[J]. Plant Methods, 2019, 15(1): 156-163.
29
刘明博, 唐延林, 李晓利, 等. 水稻叶片氮含量光谱监测中使用连续投影算法的可行性[J]. 红外与激光工程, 2014, 43(4): 1265-1271.
Liu M, Tang Y, Li X, et al. The feasibility of using continuous projection algorithm in the spectral monitoring of nitrogen content in rice leaves[J]. Infrared and Laser Engineering, 2014, 43(4): 1265-1271.
30
Guo L, Yu Y, Yu H, et al. Rapid quantitative analysis of adulterated rice with partial least squares regression using hyperspectral imaging system[J]. Journal of the Science of Food and Agriculture, 2019, 99(12): 175-189.
31
Yu F, Xu T, Du W, et al. Radiative transfer models (RTMs) for field phenotyping inversion of rice based on UAV hyperspectral remote sensing[J]. International Journal of Agricultural and Biological Engineering. 2017, 12 (13): 110-116.
32
Nguyen H T, Lee B W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression[J]. European Journal of Agronomy, 2006, 24(4): 349-356.
33
周扬帆, 陈佑启, 何英彬. 基于高光谱曲线的马铃薯与其他主要作物光谱差异性分析[J]. 中国农业资源与区划, 2017, 38(11): 10-16.
Zhou Y, Chen Y, He Y. Analysis of spectral difference between potato and other major crops based on hyperspectral curve[J]. China Agricultural Resources and Regional Planning, 2017, 38 (11): 10-16.
34
陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44.
Chen G, Zhao S, Cao L, et al. Maize plant disease recognition based on transfer learning and convolutional neural network[J]. Smart Agriculture, 2019, 1 (2): 34-44.

基金

国家“十三五”重点研发计划项目(2016YFD0200600)
辽宁省教育厅科技人才“育苗”项目(LSNQN201903)
PDF(1328 KB)

文章所在专题

智慧农业

76

Accesses

0

Citation

Detail

段落导航
相关文章

/