基于北斗系统的大田智慧农业精准服务体系构建

吴才聪, 方向明

智慧农业(中英文). 2019, 1(4): 83-90

PDF(1195 KB)
PDF(1195 KB)
智慧农业(中英文) ›› 2019, Vol. 1 ›› Issue (4) : 83-90. DOI: 10.12133/j.smartag.2019.1.4.201911-SA001
智能管理与控制

基于北斗系统的大田智慧农业精准服务体系构建

作者信息 +

Development of precision service system for intelligent agriculture field crop production based on BeiDou system

Author information +
History +

本文亮点

农机精确导航技术正在中国大田种植领域规模化应用,但农机精准作业技术和农业生产精细管理技术的应用仍进展缓慢,精准农业技术、装备与服务体系尚未完成构建,节本增效和节能环保等农业生产目标的实现仍缺乏技术手段。随着物质、能量和信息三要素的不断融合,智能农机系统呼之欲出,将为农业生产提供安全、高效和科学的解决方案。基于智能农机系统的特点、中国农机社会化服务的特征及农业财政补贴的现状,本研究以节本增效和节能环保为主要目标,围绕农业生产组织、农机服务组织和农业主管部门等农机生产作业的核心参与者,融合农机社会化服务和农机精准化服务,建立了中国农机社会化精准服务体系。该体系预期可精确监测农机作业面积和肥药施用量等基本作业参数,可作为社会化服务结算和作业补助发放的精准依据。本研究为实现肥药双减等目标、帮助国家有关农业补贴政策调整和促进中国精准农业技术的全面应用提供了解决思路和技术手段。

HeighLight

Precision navigation technology of agricultural machinery is being applied on a large scale for field crop production in China. The technology can reduce labor cost, improve working quality, and extend working time. However, the precision application technology of agricultural machinery and precision management technology of agricultural production are still slow in development. The technology, equipment, and service system of precision agriculture have not been completely developed yet in China. There is still a lack of scientific and technical means to achieve the main objectives of cost saving, efficiency improvement, energy saving, and environmental protection in crop production. With the integration of material, energy, and information, intelligent agricultural machinery system is being developed to provide a safer, more efficient, and more scientific solution for agricultural production. In view of the characteristics of intelligent agricultural machinery system, the characteristics of socialized service of agricultural machinery in China, and the status quo of agricultural financial subsidies, this paper puts forward an idea that to develop a socialized precision service system of agricultural machinery, in order to achieve cost saving, efficiency improvement, energy saving, and environmental protection for crop production. The system includes the core participants in agricultural machinery production operations, such as agricultural production organizations, agricultural machinery service organizations, related agriculture management authorities, and the third-party data management service organization. The key technologies for the system include the intelligent gateway technology of agricultural machinery, the variable controlling and measurement technology of fertilizer and chemical, the big data management service technology, and the technology of professional application service platform. During the field operation, the agricultural machinery can control the application of fertilizer or chemical according the prescription map and send the data of position and flow to the database belongs to the third-party organization designated by the government. Therefore, the construction of this system can be used as a basis for the social services and the granting of subsidies. The government can set related standards of application of fertilizer or chemical, and pay the subsidies for the machinery operation according to the operating area when the farmers achieve the standards, which may encourage the farmers to adopt the advanced technology to save fertilizer and chemical. The study provides solutions and technical means to achieve the goal of reducing both fertilizer and chemicals, to adjust of the state’s relevant agricultural subsidy policies, and to promote the comprehensive application of China’s precision agricultural technology.

引用本文

导出引用
吴才聪 , 方向明. 基于北斗系统的大田智慧农业精准服务体系构建. 智慧农业. 2019, 1(4): 83-90 https://doi.org/10.12133/j.smartag.2019.1.4.201911-SA001
Caicong Wu , Xiangming Fang. Development of precision service system for intelligent agriculture field crop production based on BeiDou system. Smart Agriculture. 2019, 1(4): 83-90 https://doi.org/10.12133/j.smartag.2019.1.4.201911-SA001

参考文献

1
李安宁, 郭京华, 刘小伟, 等 . 赴美国精准农业考察情况报告——中美科技合作交流计划精准农业考察团[J]. 农业工程技术, 2018, 38(9): 112-117.
2
Pierce F J , Nowak P . Aspects of Precision Agriculture [J]. Advances in Agronomy, 1999, 67(1):1-85.
3
吴才聪 . 美国精准农业技术应用概况及北斗农业应 用思考[J]. 卫星应用( 6:16-20.
4
刘小伟, 吴才聪 . 基于北斗系统发展我国精准农业技术装备[J]. 农业工程技术, 2018, 38(18): 14-19.
5
余有成 . 智能奥秘探寻记[M]. 香港: 香港文汇出版社, 2012.
6
韩树丰, 何勇, 方慧 . 农机自动导航及无人驾驶车辆的发展综述[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 381-391.
Han S , He Y , Fang H . Recent development in automatic guidance and autonomous vehicle for agriculture: A review[J]. Journal of Zhejiang University (Agric. & Life Sci.), 2018, 44(4: 381-391.
7
赵春江 . 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
Zhao C . State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7.
8
罗锡文, 廖娟, 邹湘军, 等 . 信息技术提升农业机械化水平[J]. 农业工程学报, 2016, (20): 1-14.
Luo X , Liao J , Zou X , et al . Enhancing agricultural mechanization level through information technology[J]. Transactions of the CSAE, 2016, 32(20): 1-14.
9
罗锡文, 廖娟, 胡炼, 等 . 提高农业机械化水平促进农业可持续发展[J]. 农业工程学报, 2016, 32(1): 1-11.
Luo X , Liao J , Hu L , et al . Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the CSAE, 2016, 32 (1): 1-11.
10
吴才聪, 苑严伟, 韩云霞 . 北斗在农业生产过程中的应用[M]. 北京: 电子工业出版社, 2016.
11
李金良, 倪国庆, 朱金光, 等 . 我国农业装备产业技术发展方向及路径[J]. 农业机械, 2019, (8): 81-85.
12
北斗卫星导航系统 . 北斗卫星导航系统介绍[EB/OL]. [2019-11-10].
China Satellite Navigation System Management Office . Introduction to BeiDou Navigation Satellite System[EB/OL]. [2019-11-10].
13
Yang Y , Li X . Micro-PNT and comprehensive PNT[J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1249-1254.
14
Yang Y , Gao W , Guo S , et al . Introduction to BeiDou-3 navigation satellite system[J]. Navigation, Journal of the Institute of Navigation, 2019, 66(1): 7-18.
15
Betz J W , Lu M , Morton Y T J , et al . Introduction to the special issue on the BeiDou navigation system[J]. Navigation, Journal of the Institute of Navigation, 2019, 66(1): 3-5.
16
Wang J , Zhu Y , Chen Z , et al . Auto-steering based precise coordination method for in-field multi-operation of farm machinery[J]. Int J Agric & Biol Eng, 2018, 11(5): 174-181.
17
Shen K , Lin Z , Ying X , et al . Agricultural machinery automatic guidance technology based on patent map[J]. International Agricultural Engineering Journal, 2017, 26(2): 1-11.
18
Han X Z , Kim H J , Kim J Y , et al . Path-tracking simulation and field tests for an auto-guidance tillage tractor for a paddy field[J]. Computers and Electronics in Agriculture, 2015, 112: 161-171.
19
汪懋华 . 助力乡村振兴 推进“智慧农业”创新发展[J]. 智慧农业, 2019, 1(1).
Wang M . To promote the innovation and development of "smart agriculture" in rural areas[J]. Smart Agriculture, 2019, 1(1).
20
Zhang Q , Pierce F J . Agricultural automation: Fundamentals and practices[M]. New York: CRC Press, 2013.
21
Abu Bakar B , Ahmad M T , Ghazali M S S , et al . Leveling-index based variable rate seeding technique for paddy[J]. Precision Agriculture, 2019.
22
杨丽, 颜丙新, 张东兴, 等 . 玉米精密播种技术研究进展[J]. 农业机械学报, 2016, 47(11): 38-48.
Yang L , Yan B , Zhang D , et al . Research progress on precision planting technology of maize[J]. Transactions of the CSAM, 2016, 47(11): 38-48.
23
韩英, 贾如, 唐汉 . 精准变量施肥机械研究现状与发展建议[J]. 农业工程, 2019, 9(5):1-6.
Han Ying , Jia Ru , Tang Han . Research status and development suggestions of precision variable-rate fertilization machine[J]. Agricultural Engineering, 2019, 9(5): 1-6.
24
Wang L , Lan Y , Yue X , et al . Vision-based adaptive variable rate spraying approach for unmanned aerial vehicles[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3): 18-26.
25
Baio F H R , Neves D C , Souza H B , et al . Variable rate spraying application on cotton using an electronic flow controller[J]. Precision Agriculture, 2018, 19(5): 912-928.
26
Wen S , Zhang Q , Deng J , et al . Design and experiment of a variable spray system for unmanned aerial vehicles based on PID and PWM control[J]. Applied Sciences-Basel, 2018, 8(12): 2482.
27
中国商业数据网 . 2019-2024年中国无人机市场前景及投资机会研究报[R]. 2019.
28
Sun H , Slaughter D C , Perez-Ruiz M. , et al . RTK GPS mapping of transplanted row crops[J]. Computers and Electronics in Agriculture, 2010, 71: 32-37.
29
Carballido J , Perez-Ruiz M , Emmi L , et al . Comparison of positional accuracy between RTK and RTX GNSS based on the autonomous agricultural vehicles under field conditions[J]. Applied Engineering in Agriculture, 2014, 30(3): 361-366.
30
Zhang S , Xue X , Chen C , et al . Development of a low-cost quadrotor UAV based on ADRC for agricultural remote sensing[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(4): 82-87.
31
Zang Y , Zang Y , Zhou Z , et al . Design and anti-sway performance testing of pesticide tanks in spraying UAVs[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(1): 10-16.
32
Wang X , He X , Song J , et al . Drift potential of UAV with adjuvants in aerial applications[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5): 54-58.
33
Bochtis D D , Sørensen C G C , Busato P . Advances in agricultural machinery management: A review[J]. Biosystems Engineering, 2014, 126: 69-81.
34
Wu C , Zhou L , Wang J , et al . Smartphone based precise monitoring method for farm operation[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(3): 111-121.
35
Wu C , Zhao J , Wang J , et al . Model and system for cotton-picker operation scheduling[C]// American Society of Agricultural and Biological Engineers Annual International Meeting 2015.
36
杨杰 . 上海启动农机购置补贴“三合一”试点[J]. 中国农机监理, 2019, (6): 26.
37
Li E , Yang M , Cook M L . Agricultural machinery cooperatives in China: Origin, development, and innovation[C]// Reno, Nevada, 2009.
38
李先德, 宗义湘 . 农业补贴政策的国际比较[M]. 北京: 中国农业科学技术出版社, 2012.

基金

国家重点研发计划(2016YFB0501805)
PDF(1195 KB)

文章所在专题

智慧农业

211

Accesses

0

Citation

Detail

段落导航
相关文章

/