
家畜智能养殖设备和饲喂技术应用研究现状与发展趋势
Advances in the development and applications of intelligent equipment and feeding technology for livestock production
家畜智能养殖设备是智能农机装备的组成部分之一,是国际农业装备产业技术竞争的焦点。本文重点围绕家畜智能养殖设备与饲喂技术在实践中的应用,进行了系统的性能特点分析。目前家畜智能养殖设备的开发对象主要针对猪和奶牛,主要研发的系统包括妊娠母猪电子饲喂站、哺乳母猪精准饲喂系统、奶牛精准饲喂系统和挤奶机器人等。家畜智能养殖设备的工业化应用必须与养殖模式、畜舍结构布局结合起来,才能发挥设备的使用效率,同时从满足动物的福利出发,与动物生理、生长及行为结合起来,形成设备与动物的互作和相互适应。最后指出了智能设备的研究必须与畜牧业生产的理论、目标产品的功能驱动及养殖方式的创新协调一致,要不断地更新换代,才能助推畜牧业的转型升级。
Intelligent equipment for livestock production is one of the components of intelligent agricultural machinery equipment, and is the focus of technology development in international agricultural equipment industry. This paper reviewed the current situation and development trend of intelligent equipment for livestock production systems nationally and internationally, including electronic feeding stations, animal farming robots, and many supporting intelligent facilities within the animal house. The features and performance characteristics of the equipment were discussed. The development of intelligent equipment for livestock production systems mainly focused on pigs and dairy cows including electronic sow feeding station, lactating sow precision feeding system, electronic cattle feeding station, automatic cattle feeding system, cattle feed pusher and dairy cow milking robot. The development and application of intelligent livestock equipment such as the electronic feeding stations and feeding robots, have significantly increased the production efficiency and saved labor cost in both pig and dairy farms. In addition, it also contributed to improve both of the animal and farmer welfare. However, there is still considerable room to get the application of intelligent livestock equipment improved in practice. For example, the animals have to be trained to get used to the intelligent facilities. On the other hand, the intelligent facilities are also required to identify individual animal or animal organ more accurately in order to further increase the production efficiency. Therefore, the key features in the further development of intelligent livestock equipment would be smarter, more convenient, more reliable, and more economical. At the meantime, it should be a highly integrated and coordinated intelligent system including intelligent facilities, well trained staff, good animal welfare, and comfortable environment. Therefore, the industrial application of the intelligent livestock equipment should be integrated with the local farming practice and fitted with the layout of animal houses in order to increase the efficiency of the equipment, and consequently, to improve animal welfare. The systematical combination of intelligent facilities and animal physiology, animal growth, and animal behavior could contribute to the dynamic interactions between the equipment and animal. Finally, it was concluded that the development of intelligent equipment should be coordinated with the theory of animal production, the function of animal products and the innovation of farming practice. And it also should be continuously updated to promote the transformation and upgrading of animal husbandry industry.
家畜 / 智能养殖设备 / 精准饲喂系统 / 电子饲喂站 / 养殖机器人 / 动物福利 {{custom_keyword}} /
livestock / intelligent livestock equipment / precision feeding system / electronic feeding station / robot / animal welfare {{custom_keyword}} /
图6 奥地利Schauer公司COMPIDENT奶牛饲喂站Fig. 6 COMPIDENT Cow electronic cattle feeding, Schauer Ltd., Austria |
图 10 荷兰Lely Astronaut A4挤奶机器人Fig. 10 Astronaut A4 milking robot, Lely Global, The Netherlands |
[1] |
“畜禽重大疫病防控与高效安全养殖综合技术研发”重点专项2018年度项目申报指南及形式审查条件要求[EB/OL]. 国家科技政策平台( 2017- 10- 10) [2018-11-07]. http://www.stdaily.com/kjzc/top/2017-10/10/content_582574.shtml?from=singlemessage.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
聚焦提质增效加快畜牧业转型升级[EB/OL]. 新华网, ( 2016- 09- 29)[2018-11-07]. http://www.xinhuanet.com/politics/2016-09/29/c_129305521.htm.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
史利军 . 群养母猪智能化精准饲喂装置的设计[D]. 武汉:华中农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
2017年中国养殖业发展情况分析[EB/OL]. 中国产业信息, ( 2018- 02- 05)[2018-11-07]. http://www.chyxx.com/industry/201802/611286.html.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
傅衍 . 国外母猪的繁殖性能及年生产力水平[J]. 猪业科学, 2010,27(3):32-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
刘国信 . 提高猪场效益从母猪抓起[J]. 饲料与畜牧, 2017, (12):52-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
以色列奶牛: 全球乳产量冠军的秘密[EB/OL]. 以色列农业考察, ( 2016- 05- 08) [2018-11-07]. http://www.israel-agro.com/israel/israel-da.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
班洪赟, 周德, 田旭 . 中国奶业发展情况分析: 与世界主要奶业国家的比较[J]. 世界农业, 2017, (3):11-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
李永辉 . 电子饲喂模式对母猪福利、健康和生产水平的影响[J]. 猪业科学, 2016,33(08):47-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
熊本海, 杨亮, 曹沛 , 等. 哺乳母猪自动饲喂机电控制系统的优化设计及试验[J]. 农业工程学报, 2014,30(20):28-33.
随着中国规模化、集约化种猪场数字化智能饲喂需求的快速增加,为解决哺乳母猪少吃多餐且随哺乳日龄变化采食量动态增加的饲喂控制需求,该研究以哺乳母猪为试验对象,将机电系统、无线网络技术、Android技术、SQL Lite网络数据库、电子数据交换与哺乳母猪的营养供给模型集成起来,设计了一种哺乳母猪自动饲喂控制智能系统。研究结果表明,组成一个哺乳母猪智能系统的主要部件包括供料线、缓冲料仓、料位控制筒、料位调控杆、下料控制线管、螺旋输送机、中央控制箱、下料触发器、料槽及下料管道等,而且通过在系统的微处理器内存预设的采食量模型与雨刷电机精确旋转的电子控制技术相结合,实现了对预设饲喂量的准确投料;还通过储料仓的料位控制机构及设置的人工观察孔,可控制缓冲料仓的合理贮料量,尤其对泌乳早期(0~10 d)母猪的存贮料量最佳为大约10 d单头母猪的理论采食量,以保持日粮的新鲜度及减少结拱;预设的采食量的动态投料控制量基本符合哺乳母猪实际采食变化规律,且实际采食量的变化轨迹收敛于对数曲线。基于智能自动饲喂系统中采食量模型计算出不同泌乳日期的预测采食量,按4次/d的饲喂频率及变化的投料比例(30%,25%,25%及20%)进行定时与定量投喂,与人工饲喂对比,能显著促进哺乳仔猪采食量的增加(P<0.05),以及极显著提高哺乳仔猪的平均体质量日增加量(P<0.01)。此外,考虑安装、清理料槽及母猪采食的方便性,建议母猪饲喂器的触发器安装高度大约为10 cm。总之,该文设计的哺乳母猪电子自动饲喂系统无需传感器及电子标识技术的应用,适合在中国中、小型的种猪繁育场的哺乳舍推广应用, 且系统设备及相应的软件系统的部署方便。进一步指出,母猪自动饲喂器除需要验证哺乳母猪的采食特性及哺乳的仔猪的断奶性能外,在未来还需要观察母猪的返情率甚至断奶商品猪的成活率等指标,从整个母猪的利用年限评价智能饲喂设备的优劣。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
祝文琪 . “智汇牧场”落地中国,利拉伐走了多远?——利拉伐智汇牧场高峰论坛在杭州西子湖畔召开[J]. 中国乳业, 2017 (11):54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
郭彦存 . 如何提高母猪年生产力[J]. 现代农业, 2018 (09):66-67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
费玉杰 . 智能饲喂系统设计及投料控制算法的研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
杨亮, 曹沛, 王海峰 , 等. 妊娠母猪自动饲喂机电控制系统的优化设计与试验[J]. 农业工程学报, 2013,21(29):66-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
叶娜, 黄川 . 荷兰Velos智能化母猪饲养管理系统在国内猪场的应用[J]. 养猪, 2009 (2):41-42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
Gestal 3G: Computerized feeding system for group-housed sows [EB/OL]. Gestal, [ 2018- 11- 07]. http://jygatech.com/products/gestal-3g/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
妊娠母猪小群养智能饲喂站[EB/OL]. 成都肇元科技有限公司, 2016- 03- 12 [2018-11-07]. http://www.ttzy.net.cn/index.php?_m=mod_product&_a=view&p_id=246.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
庄志伟, 薛墨庸 . 仔猪最佳断奶日龄的再思考[J]. 国外畜牧学(猪与禽), 2017,37(08):32-35.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
Farrowing products[EB/OL]. Gestal, [ 2018- 11- 07]. http://jygatech.com/farrowing/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
Gestal Quattro. The new evolution of the Gestal system in lactation. Feed sows while saving electricity[EB/OL]. [ 2018- 11- 07]. http://jygatech.com/products/gestal-quattro/#info.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
Gestal Solo. Computerized feeding system for farrowing sows[EB/OL]. [ 2018- 11- 07]. http://jygatech.com/products/gestal-solo-2/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
Compident cow electronic cattle feeding[EB/OL]. [2018-11-07]. https://en.schauer-agrotronic.com/cattle/cattle-feeding/compident-cow-electronic-cattle-feeding/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
Ric Feed-weight trough[EB/OL]. [2018-11-07]. http://www.hokofarmgroup.com/ric/feed-weigh.aspx.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
AbstractThe objective of this study was to validate a system for monitoring individual feeding and drinking behavior and intake in group-housed cattle. A total of 42 Holstein cows were tested with access to 24 feed bins and 4 water bins. For the purposes of this validation experiment, we focused our observations on 4 water bins and 13 feed bins. When the cow approached the feed or water bin, an antenna detected the cow's unique passive transponder and lowered the barrier, allowing the cow access to the feed or water. For each visit to the bin, the system recorded the cow number, bin number, initial and final times and weight and calculated the visit duration and intake. Bins were also monitored by direct observation and time-lapse video recording for 2 d per bin, with observations for 4 and 6 h/d for the feed and water bins, respectively. Data from direct observations were compared with the electronic data recorded by the system. Feed disappearance over 24 h was assessed by using an external scale over 3 consecutive 24-h periods, and these values were compared with the sum of intakes across all visits to that bin for the same time periods. The system showed a high specificity (100%) and sensitivity (100 and 99.76% for the feed and water bins, respectively) for cow identification. The duration of the feeding and drinking visits and the feed and water intake per visit, as estimated by the monitoring system, were highly correlated with those obtained by direct observation (R2 ≥ 0.99 in all the cases). The comparison of the total feed that disappeared from each bin in 24 h with the sum of the feed cows consumed from that bin during the same period differed by less than 1 kg (29.92 ± 0.90 kg and 29.24 ± 0.90 kg as estimated by manual weighing and by the electronic system, respectively). This difference could be attributed to changes in feed moisture during the 24-h period. In conclusion, this electronic system is a useful tool for monitoring intakes and feeding and drinking behavior of loose-housed cows. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
Lely Vector[EB/OL]. [2018-11-07]. https://www.lely.com/solutions/feeding/vector/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
Lely Juno feed pusher[EB/OL]. [2018-11-07]. https://www.lely.com/us/solutions/feeding/juno.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
刘俊杰, 王秀珍, 余涛 , 等. 挤奶机器人国内外研究现状[J]. 农业科技与装备, 2015 (07):30-33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
杨圣虎 . 挤奶机器人装备结构设计研究[D]. 哈尔滨:哈尔滨工程大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
Global full-automatic milking robots market - Lely, DeLaval, Hokofarm, GEA Farm, Fullwood[EB/OL]. ( 2018-01-08 )[2018-11-07]. https://www.openpr.com/news/889053/Global-Full-Automatic-Milking-Robots-Market-Lely-DeLaval-Hokofarm-GEA-Farm-Fullwood.html.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
马玲娟, 皇才进, 祁亚卓 . 国外挤奶机器人的发展现状[J]. 中国奶牛, 2015 (22):48-51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
Lely Astronaut A4[EB/OL]. [2018-11-07]. https://www.lely.com/solutions/milking/astronaut-a4/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
DeLaval voluntary milking system VMSTM[EB/OL]. [2018-11-07]. .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
王进圣, 罗平涛 . 制约我国肉鸡业发展的主要因素[C]// 全球肉鸡产业论坛暨中国白羽肉鸡产业发展大会会刊. 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
熊本海, 杨亮, 郑姗姗 . 我国畜牧业信息化与智能装备技术应用研究进展[J]. 中国农业信息, 2018,30(01):17-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
殷若新, 李永刚, 肖玲 , 等. 家禽养殖设备发展概况及未来发展方向[J]. 家禽科学, 2018 (12):23-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
黄彬庚 . 充分认识“猪周期”现象促进养猪业健康发展[J]. 畜牧兽医科技信息, 2018 (08):85.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
张金辉 . 睿保乐:智能化养猪变革的推动者[J]. 猪业科学, 2016,33(05):56-59.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
杨亮, 易渺, 熊本海 . 饲喂设备在养猪业的应用[J]. 中国农业科技导报, 2013,15(06):147-151.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
Consideration on the five trends of China's livestock industry from the development of animal husbandry in Europe. http://www.bjny.gov.cn/nyj/231595/603501/603556/5639293/index.html.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
未来农业, 触手可及—约翰迪尔智能农业解决方案[EB/OL].( 2017-03-13)[2018-11-07].
Future agriculture, within reach - John Deere Intelligent Agriculture Solution[EB/OL].( 2017-03-13)[2018-11-07]. https://news.lmjx.net/2017/201703/2017031316122068.shtml.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
李修松 . 母猪饲养的革命—智能化母猪饲喂系统在现代化猪场的应用[J]. 猪业观察, 2014 (8):65-69.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
周洪, 钟日开, 罗土玉 , 等. 哺乳母猪智能饲喂器设计[J]. 现代农业装备, 2018 (02):39-42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
Transfeed DEC feeding robot[EB/OL]. [2018-11-07]. https://en.schauer-agrotronic.com/cattle/cattle-feeding/transfeed-dec-feeding-robot/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
Lely Discovery collector[EB/OL]. [2018-11-07]. https://www.lely.com/solutions/housing-and-caring/discovery-collector/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
Lely Walkway[EB/OL]. [2018-11-07]. https://www.lely.com/solutions/housing-and-caring/walkway/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |