
农情监测多旋翼无人机系统开发及性能评估
Development and performance evaluation of a multi-rotor unmanned aircraft system for agricultural monitoring
现代农业要求农业生产者实时、准确、全面地了解农作物的生长环境和生长状态。与传统的人工田间调查方式相比,无人机是一种高效的农田信息获取平台。本研究将自主研发的八旋翼无人机与农田信息采集设备进行整合,形成了一套用于农情监测的无人机系统,实现了无人机按照预设航线自动巡航并采集农田遥感图像、地理位置信息以及环境照度信息。经测试,在飞行中,图像采集设备能够稳定维持垂直对地的姿态并进行拍摄,采集的数据能够拼接成完整的农田正射影遥感图像。测试结果表明研发的无人机系统能够满足低空农情监测作业要求。与商业化产品相比,该系统避免了因任务设备与飞机独立工作而导致重拍、漏拍的情况,实现了无人机与任务设备高效协同作业。
In modern agriculture production, to obtain real-time, accurate and comprehensive information of the farmlands is necessary for farmers. Unmanned Aircraft System (UAS) is one of the most popular platforms for agricultural information monitoring, especially the multi-rotor aircraft due to its simplicity of operation. It is easy to control the speed and altitude of multi-rotor aircraft, even at low altitude. The above features enable multi-rotor UAS to acquire high-resolution images at low altitudes by integrating different imaging sensors. The aim of this work was to develop an octocopter UAS for agricultural information monitoring. In order to obtain the high-resolution aerial images of the entire experimental field, the Sony Nex-7 camera was attached to the aircraft. According to the real-time position of the aircraft got from global position system (GPS) and inertial measurement unit (IMU), the flight control system of the aircraft will send signals to control the camera to capture images at desired locations. Besides, position and orientation system (POS) and an illuminance sensor were loaded on the aircraft to get the location, shooting angle and ambient illumination information of each image. The system can be used to collect the remote sensing data of a field, and the performance was comprehensively evaluated in the field of oilseed rape experimental station in Zhuji, Zhejiang Province, China. The result shows that the system can keep the camera optical axis perpendicular to the ground during the operation. Because the effective communication was established between the mission equipment and the flight control system, the UAS can accurately acquire the images at the pre-defined locations, which improved the operation efficiency of the system. The images collected by the system can be mosaicked into an image of the whole field. In summary, the system can satisfy the demand for the agricultural information collection.
无人机系统 / 农情监测 / 遥感图像 / 自主飞行 / 路径规划 / 农田信息获取 {{custom_keyword}} /
unmanned aircraft system / agricultural monitoring / remote sensing images / automatic flight / path planning / agricultural information acquisition {{custom_keyword}} /
表1 供电电源参数Table 1 Parameter of battery |
参数 | 内容 |
---|---|
电池类型 | 锂聚合物电池 |
标准电压(V) | 22.2 |
充满电时电池电压(V) | 25.2 |
电池容量(mAh) | 16000 |
充电电流(A) | 16~32 |
表2 相机与飞机姿态对比结果Table 2 Comparison results of camera and UAV attitude |
试验编号 | 相机俯仰角标准偏差(°) | 飞机俯仰角标准偏差(°) | 相机横滚角标准偏差(°) | 飞机横滚角标准偏差(°) |
---|---|---|---|---|
1 | 1.30 | 3.36 | 0.81 | 2.21 |
2 | 1.07 | 2.86 | 0.72 | 2.06 |
3 | 0.96 | 3.33 | 0.79 | 2.28 |
4 | 0.98 | 3.00 | 0.79 | 1.34 |
5 | 1.11 | 3.06 | 0.72 | 2.16 |
6 | 0.98 | 3.00 | 0.79 | 1.34 |
表3 位置偏差对比结果Table 3 Comparison of distance between planned waypoints and actual waypoints |
试验编号 | 偏差距离平均值(m) |
---|---|
1 | 2.77 |
2 | 2.59 |
3 | 2.92 |
4 | 1.47 |
5 | 2.30 |
6 | 2.15 |
[1] |
汪懋华 . “精细农业”发展与工程技术创新[J]. 农业工程学报, 1999(01):7-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
罗锡文, 张泰岭, 洪添胜 . “精细农业”技术体系及其应用[J]. 农业机械学报, 2001(02):103-106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
江晶 . 国家现代农业示范区运行机制与发展模式研究[D]. 北京: 中国农业科学院, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
周志艳, 臧英, 罗锡文 , 等. 中国农业航空植保产业技术创新发展战略[J]. 农业工程学报, 2013,29(24):1-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
周志艳, 明锐, 臧禹 , 等. 中国农业航空发展现状及对策建议[J]. 农业工程学报, 2017,33(20):1-13.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
孙毅, 王英勋 . 无人机驾驶员航空知识手册[M]. 北京: 中国民航出版社, 2014: 6-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
李伟荣 . 带悬挂吊舱的八旋翼特种无人机动力学建模与控制[D]. 杭州: 浙江大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
范继伟 . 基于混杂控制系统的八旋翼飞行器设计[D]. 吉林:东北电力大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
张金亮 . 捷联惯性/星光组合导航关键技术研究[D]. 西安: 西北工业大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
王守宽 . 基于MEMS低成本微型捷联惯性导航系统研究[D]. 北京:北京理工大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
李希胜, 王家鑫, 汤程 , 等. 高精度磁电子罗盘的研制[J]. 传感技术学报, 2006(06):2441-2444.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
王伟, 周勇, 王峰 , 等. 基于气压高度计的多旋翼飞行器高度控制[J]. 控制工程, 2011,18(04):614-617.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
王贤 . 基于POS系统的数字正射影像制作研究[D]. 绵阳: 西南科技大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
盛浩然 . 航空摄影测量基础知识[M]. 北京: 测绘出版社, 1979.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
潘冉冉 . 基于RTK的农机精准定位系统的研究[D]. 杭州:浙江大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |