SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT
ZHANG TianPeng,YAN TieZhu,JIN PingZhong,LEI QiuLiang,LIAN HuiShu,LI Ying,LI XiaoHong,OU HuiPing,ZHOU JiaoGen,DU XinZhong,WU ShuXia,LIU HongBin
【Objective】 Net anthropogenic nitrogen input (NANI) is one of the important causes to non-point source pollution. In order to investigate the spatio-temporal characteristics and influencing factors of net anthropogenic nitrogen input, the key source areas were identified and the key sources in watersheds were analyzed, so as to provide data support for solving the problem of non-point source nitrogen pollution. 【Method】 Three watersheds were selected according to their characteristics, among which Xiangxi River watershed was a typical agriculture watershed, Erhai watershed was comprehensively promotion model of green agricultural development, and Taihu watershed was a typical urban centralized watershed. Based on the NANI model, the data was obtained through statistical yearbook and literature review to evaluate NANI of the three typical watersheds.【Result】 In terms of NANI intensity, the average value of NANI in the three typical watersheds was ranked as follows: Taihu watershed (13 241 kg·km-2·a-1), Xiangxi River watershed (2 183 kg·km-2·a-1), and Erhai watershed (1 582 kg·km-2·a-1). In terms of NANI sources, nitrogen application (Nfer) and food/feed nitrogen (Nim) were the largest sources of NANI, accounting for 58%-97%. The NANI contribution ranked in the order of nitrogen application, food/feed nitrogen input, nitrogen deposition input, and crop nitrogen fixation input. In terms of time, food/feed nitrogen input of Xiangxi River watershed decreased by 23 percentage points from 2010 to 2019, while nitrogen deposition increased by 34 percentage points. From 2010 to 2019, nitrogen application in NANI decreased by 86 percentage points in Erhai watershed. From 2010 to 2019, the input of food/feed nitrogen to NANI in Taihu watershed increased by 31 percentage points, while the input of crop nitrogen fixation and nitrogen deposition decreased by 14 and 12 percentage points, respectively. In terms of influencing factors, NANI was significantly correlated with urban population density in the three typical watersheds (P<0.05), and NANI increased with the increase of urban population density. The Xiangxi River watershed had a significant effect on the proportion of cultivated land and NANI fitting (P<0.05), but the Erhai watershed and Taihu watershed was not significant effect (P>0.05)..【Conclusion】 Zhaojun town, Xiakou town and Huangliang town in Xiangxi River watershed, Xiaguan town, Shangguan town and Fengyi town in Erhai watershed, and Zhangjiagang City, Xiucheng District in Jiaxing City, Gongshu District and Nanhui District in Taihu watershed were the key source areas of NANI. Fertilizer application was the main source of NANI in Xiangxi River watershed where is mainly agricultural. The input of food/feed nitrogen and fertilizer nitrogen were the main sources of NANI in Taihu watershed where is mainly urbanization. The green agricultural development model could significantly reduce net anthropogenic nitrogen input. Therefore, it was beneficial to control agricultural non-point source pollution by vigorously promoting agricultural green development measures and effectively reducing the input of feed and fertilizer in key source areas.