引用排行
Baidu   CSCD  

文章出版日期: 一年内 | 两年内 | 三年内 | 全部
当前选项: Baidu + 全部
Please wait a minute...
  • 全选
    批量引用 |
  • YIN Yong-an, QI Jun-cang, LI Wei-hua, CAO Lian-pu , WANG Zi-bu
    Journal of Integrative Agriculture. 2012, 11(1): 73-81. https://doi.org/10.1016/S1671-2927(00)8518
    Baidu(89)
    Wheat grain natural transverse sections of 12 periods were observed and analyzed using scanning electron micrographs technology and Bio-Quant system IV image analyzer in order to detect the developing process of A- and B-type starch granules. In addition, the chemical composition and starch granule-bound proteins (SGPs) of A- and B-type starch granules were tested and analyzed. The results showed that A-type starch granules in wheat began from 3 d post anthesis (DPA) till grain maturing and B-type starch granules occured after 15 DPA till grain maturing. Approximately 98.5% of chemical compositions in both A- and B-type starch granules were amylose and amylopectin, and more than half of which were amylopectin. The amylopectin contents, average chain length, and chain length distribution (degree of polymerization> 40) of amylopectin in A-type starch granules were significant higher than that of B-type starch granules. SGP-145, SGP- 140, and SGP-26 kD were associated with A-type starch formation in wheat grain.
  • RAO Qiong, XU Yong-hua, LUO Chen, ZHANG Hong-yu, Christopher M Jones, Greg J Devine, KevinGorman , Ian Denholm
    Journal of Integrative Agriculture. 2012, 11(2): 321-326. https://doi.org/10.1016/S1671-2927(00)8549
    Baidu(104)
    Four strains of the Q biotype and one of the B biotype of the whitefly Bemisia tabaci collected from China were characterised for resistance to four neonicotinoid insecticides and pymetrozine. Q biotype strains showed moderate to strong resistance to imidacloprid, thiamethoxam and acetamiprid, but little or no cross-resistance to dinotefuron. Resistance to neonicotinoids was consistently associated with resistance to pymetrozine, despite the latter having a distinct (though unresolved) mode of action. The single B biotype strain proved largely susceptible to all the insecticides investigated. Resistance in the Q biotype strains was associated with over-expression of a cytochrome P450 monooxygenase gene, CYP6CM1, whose substrate specificity presumably accounts for the observed cross-resistance profiles.
  • QIU Guo-yu, YIN Jin , Shu Geng
    Journal of Integrative Agriculture. 2012, 11(1): 144-150. https://doi.org/10.1016/S1671-2927(00)8531
    Baidu(102)
    North China is the most important food basket of China, where the majority of wheat and corn are produced. Most crops grown in North China are irrigated, thus water security is food security. Since the 1980s, drying has been frequently observed, as shown by a reduction in precipitation, cutoff in riverflow, and shrinkage of lakes. This increase in drying cannot be explained by climate change alone. We propose that intensive land-use in this area in recent decades has had a significant impact. The objectives of the study are to develop a quantitative model of the concurrent processes of climate change and land-use in North China, and to estimate the relative contributions of each on the observed drying. We integrated relevant socioeconomic data, land-use data, and climate data in the model, and carried out a detailed multitemporal (decade, year, day) analysis. Results showed that land-use has greatly changed since 1999. This change is mainly associated with an extremely important 1999 national policy of “returning farmland and grazing land to forest and grassland”. We found an interesting interaction between climate change and land use policy on riverflow, runoff, and evapotranspiration. During 1970s and 1980s, climate change explained more than 80%, while the land-use change explained only 10% of the riverflow change. The relative contributions were 45 and 45% in the 1980s-1990s and 35 and 55% in the 1990s-2000s respectively for climate change and land-use change. Since the 1990s land-use change has also contributed more to runoff change than climate change. The opposite trend was found for changes in evapotranspiration. Water availability for agriculture in northern China is simultaneously stressed by extensive changes in land-use and rapid climate change. Adaptation of ecological principles, such as the “returning farmland/grazing land to forest and grassland” policy, and other adjustments of economic developmental strategies can be effective tools to mitigate the water shortage problem in northern China and promote sustainable agricultural and food development.
  • WANG Jin-xia, HUANG Ji-kun , YANG Jun
    Journal of Integrative Agriculture. 2014, 13(1): 1-17. https://doi.org/10.1016/S2095-3119(13)60588-2
    Baidu(50)
    The purpose of this paper is to document the likely impacts of climate change on China’s agriculture and the current adaptation efforts made by government and farmers. The review of literature shows that climate change will have a significant impact on agriculture, primarily through its effect on crop yields. The extent of predicted impacts highly depends on the crop, the CO2 fertilization effect assumption and adaptation abilities. Market response to the production shocks resulting from climate change will lessen the impacts on agricultural production predicted by natural scientists. On adaptation, the government’s major efforts have been in the developing new technologies, reforming extension system and enhancing institutional capacity. Farmers do adapt to climate change, but their adaptation measures cannot fully offset the negative impacts of climate change. The paper concludes and makes implications for future studies.
  • YIN Yong-an, QI Jun-cang, LI Wei-hua, CAO Lian-pu , WANG Zi-bu
    Journal of Integrative Agriculture. 2012, 11(1): 73-81. https://doi.org/10.1016/S1671-2927(00)8518
    Baidu(89)
    Wheat grain natural transverse sections of 12 periods were observed and analyzed using scanning electron micrographs technology and Bio-Quant system IV image analyzer in order to detect the developing process of A- and B-type starch granules. In addition, the chemical composition and starch granule-bound proteins (SGPs) of A- and B-type starch granules were tested and analyzed. The results showed that A-type starch granules in wheat began from 3 d post anthesis (DPA) till grain maturing and B-type starch granules occured after 15 DPA till grain maturing. Approximately 98.5% of chemical compositions in both A- and B-type starch granules were amylose and amylopectin, and more than half of which were amylopectin. The amylopectin contents, average chain length, and chain length distribution (degree of polymerization> 40) of amylopectin in A-type starch granules were significant higher than that of B-type starch granules. SGP-145, SGP- 140, and SGP-26 kD were associated with A-type starch formation in wheat grain.
  • CHANG Wei-hua, ZHANG Yong, CHENG Zhang-rui, ZHAO Xing-xu, WANG Juan-hong, MA You-ji, HU Jun-jie, ZHANG Quan-wei
    Journal of Integrative Agriculture. 2015, 14(8): 1604-1616. https://doi.org/10.1016/S2095-3119(14)60900-X
    Baidu(85)
    MicroRNAs (miRNAs) are small, single stranded, non-coding RNA molecules, about 19–25 nucleotides in length, which regulate the development and functions of reproductive system of mammal. To discover novel miRNAs and identify the differential expression of them in ovine ovary and testis tissues, the study constructed two libraries by using next-generation sequencing technologies (Solexa high-throughput sequencing technique). As a result, 9 321 775 and 9 511 538 clean reads were obtained from the ovary and testis separately, which included 130 562 (90 genes of ovary) and 56 272 (85 genes of testis) of known miRNAs and 486 potential novel miRNAs reads. In this study, a total of 65 conserved miRNAs were significantly differentially expressed (P<0.01) between the two samples. Among them, 28 miRNAs were up-regulated and 3 miRNAs were down-regulated on ovary compared with testis. In addition, the known miRNAs with the highest expression level (5 miRNAs) and 30 novel miRNAs with the functions related to reproduction were validated using the real-time quantitative RT-PCR. Moreover, the gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that differentially expressed miRNAs were involved in ovary and testis physiology, including signal transduction, gonad development, sex differentiation, gematogenesis, fertilization and embryo development. The results will be helpful to facilitate studies on the regulation of miRNAs during ruminant reproduction.
  • CHANG Wei-hua, ZHANG Yong, CHENG Zhang-rui, ZHAO Xing-xu, WANG Juan-hong, MA You-ji, HU Jun-jie, ZHANG Quan-wei
    Journal of Integrative Agriculture. 2015, 14(8): 1604-1616. https://doi.org/10.1016/S2095-3119(14)60900-X
    Baidu(85)
    MicroRNAs (miRNAs) are small, single stranded, non-coding RNA molecules, about 19–25 nucleotides in length, which regulate the development and functions of reproductive system of mammal. To discover novel miRNAs and identify the differential expression of them in ovine ovary and testis tissues, the study constructed two libraries by using next-generation sequencing technologies (Solexa high-throughput sequencing technique). As a result, 9 321 775 and 9 511 538 clean reads were obtained from the ovary and testis separately, which included 130 562 (90 genes of ovary) and 56 272 (85 genes of testis) of known miRNAs and 486 potential novel miRNAs reads. In this study, a total of 65 conserved miRNAs were significantly differentially expressed (P<0.01) between the two samples. Among them, 28 miRNAs were up-regulated and 3 miRNAs were down-regulated on ovary compared with testis. In addition, the known miRNAs with the highest expression level (5 miRNAs) and 30 novel miRNAs with the functions related to reproduction were validated using the real-time quantitative RT-PCR. Moreover, the gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that differentially expressed miRNAs were involved in ovary and testis physiology, including signal transduction, gonad development, sex differentiation, gematogenesis, fertilization and embryo development. The results will be helpful to facilitate studies on the regulation of miRNAs during ruminant reproduction.
  • NIU Xing-kui, XIE Rui-zhi, LIU Xin, ZHANG Feng-lu, LI Shao-kun , GAO Shi-ju
    Journal of Integrative Agriculture. 2013, 12(4): 630-637. https://doi.org/10.1016/S2095-3119(13)60281-6
    Baidu(83)
    In 2010, Chinese maize yields increased from 961.5 kg ha-1 in 1949 to 5 453.8 kg ha-1. This increase is the result of genetic improvements, an increase in nitrogen application, and refinement of planting densities. The objective of this study was to provide a theoretical basis for maize production research by analyzing the maize yield gain characteristics. Six varieties of maize were selected for the study; each selection is representative of a typical or commonly used maize variety from a specific decade, beginning from the 1950s and continuing through each decade into the 2000s. The selections and their corresponding decade were as follows: Baihe, 1950s; Jidan 101, 1960s; Zhongdan 2, 1970s; Yedan 13, 1980s; Zhengdan 958, 1990s; and Xianyu 335, 2000s. Each variety was planted under four different densities (37 500, 52 500, 67 500, and 82 500 plants ha-1) and four different nitrogen applications (0, 150, 225, and 300 kg ha-1) to study the effects on yield gain characteristics. The obtained results demonstrated that there was a maize yield increase of 123.19% between the 1950s variety and the 2000s variety. Modern Chinese maize varieties had a higher yield advantage. They also displayed the additional potential to acquire higher yield under increased planting densities and nitrogen applications. At the present cultivation levels (planting at 67 500 plants ha-1 with 225 kg ha-1 nitrogen application), the contribution types and corresponding yield increase percentages were as follows: genetic improvement, 45.37%; agronomic-management improvement, 30.94%; and genotype× agronomicmanagement interaction, 23.69%. At high-yielding cultivation levels (planting at 82 500 plants ha-1 with 300 kg ha-1 nitrogen application), the contribution types and corresponding yield increase percentages were as follows: genetic improvement, 31.30%; agronomic-management improvement, 36.23%; and genotype × agronomic-management interaction, 32.47%. The contribution of agronomic-management and genotype × agronomic-management interaction to yield increase would be larger with the corresponding management improvement. To further increase maize grain yield in China, researchers should further examine the effects of agronomic-management on maize yield and the adaptation of variety to agronomic-management.
  • ZHANG Wu-jun, LI Gang-hua, YANG Yi-ming, LI Quan, ZHANG Jun, LIU Jin-you, WANG Shao-hua, TANG She , DING Yan-feng
    Journal of Integrative Agriculture. 2014, 13(1): 63-72. https://doi.org/10.1016/S2095-3119(13)60388-3
    Baidu(69)
    The objective of this study was to determine the morphology mechanism of nitrogen (N) fertilizer rates and ratio on lodging resistance through analying its effects among lodging index (LI), lodging-related morphological traits and physical strength in basal internodes by comparing japonica and indica super rice cultivars. Field experiments, with three nitrogen levels (0, 150 and 300 kg ha-1) and two ratios of basal to topdressing (8:2 and 5:5) with two super rice cultivars (Yliangyou 2 and Wuyunjing 23), were conducted in the Baolin Farm, Danyang Country, Jiangsu Province, China, in 2011 and 2012. Effects of N fertilizer rates and ratios on morphology of whole plant, morphology traits in basal internodes and culm’s physical strength parameters were investigated at 20 d after full heading stage. LI of Yliangyou 2 was significant greater than that of Wuyunjing 23 due to larger bending moment by whole plant (WP) with higher plant height and gravity center height. With higher volume of N fertilizer, LI of two super rice cultivars was increased conspicuously. However, no significant effect was detected with increase of panicle fertilizer ratio. The size of breaking strength (M) in basal internodes was the key factor determining LI among N fertilizer treatments. Correlation analysis revealed that M value was positively related bending stress (BS) of Wuyunjing 23 and section modulus (Z) of Yliangyou 2, respectively. The higher N fertilizer levels induced reduction of BS of Wuyunjing 23 due to weak culm and leaf sheath plumpness status and reduced Z of Yliangyou 2 owning to small diameter and culm wall thickness, consequently, influencing their M indirectly. These results suggested that breaking strength was the key factor influencing LI with increase of N fertilizer levels. However, the lodging-related morphology mechanism was different with genotypes. Culm wall thickness and diameter in basal internodes of indica super rice and culm and leaf sheath plumpness status of japonica super rice influenced breaking strength, as well as lodging index, respectively.
  • TIAN Yun, ZHANG Jun-biao, HE Ya-ya
    Journal of Integrative Agriculture. 2014, 13(6): 1393-1403. https://doi.org/10.1016/S2095-3119(13)60624-3
    Baidu(67)
    Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 kinds of major carbon emission sources including agricultural materials inputs, paddy field, soil and livestock breeding, this paper firstly calculated agricultural carbon emissions from 1995 to 2010, as well as 31 provinces and cities in 2010 in China. We then made a decomposed analysis to the driving factors of carbon emissions with logarithmic mean Divisia index (LMDI) model. The results show: (1) The amount of agricultural carbon emissions is 291.1691 million t in 2010. Compared with 249.5239 million t in 1995, it increased by 16.69%, in which, agricultural materials inputs, paddy field, soil, enteric fermentation, and manure management accounted for 33.59, 22.03, 7.46, 17.53 and 19.39% of total agricultural carbon emissions, respectively. Although the amount exist ups and downs, it shows an overall trend of cyclical rise; (2) There is an obvious difference among regions: the amount of agricultural carbon emissions from top ten zones account for 56.68%, while 9.84 % from last 10 zones. The traditional agricultural provinces, especially the major crop production areas are the main source regions. Based on the differences of carbon emission rations, 31 provinces and cities are divided into five types, namely agricultural materials dominant type, paddy field dominant type, enteric fermentation dominant type, composite factors dominant type and balanced type. The agricultural carbon emissions intensity in west of China is the highest, followed by the central region, and the east zone is the lowest; (3) Compared with 1995, efficiency, labor and structure factors cut down carbon emissions by 65.78, 27.51 and 3.19%, respectively; while economy factor increase carbon emissions by 113.16%.
  • LI You-zhi, CAO Yang, ZHOU Qian, GUO Hai-ming , OU Gao-cai
    Journal of Integrative Agriculture. 2012, 11(4): 621-627. https://doi.org/10.1016/S1671-2927(00)8582
    Baidu(60)
    Southern rice black-streaked dwarf disease is a new rice disease that severely affects rice production in South China. To understand transmission capacity of the vector Sogatella furcifera to Southern rice black-streaked dwarf virus (SRBSDV) among different host plant species, potential host plants of SRBSDV collected from the diseased rice field and/or adjacent to the field in Hunan Province, China, were determined by RT-PCR, and the transmission rates of SRBSDV by S. furcifera among different host plant species were investigated. The results showed that host plants of SRBSDV in the rice fields were five of family Gramineae (Oryza sativa, Echinochloa crusgalli, Zea mays, Paspalum distichum, Alopecurus aequali) and two of family Cyperaceae (Juncellus serotinus and Cyperus difformis). S. furcifera could not transmit SRBSDV between gramineous plants and cyperaceous plants, and could not transmit SRBSDV between the gramineous plants, J. serotinus and C. difformis as well. However, SRBSDV could be transmitted by S. furcifera within gramineous plants. S. furcifera could transmit SRBSDV between interspecies among three species plants (O. sativa, E. crusgalli and Z. mays), and between P. distichum and A. aequali. At 15, 20, 25, 30, and 35°C, both macropterous and brachypterous adult of S. furcifera could transmit SRBSDV from the plants (e.g., E. crusgalli, Z. mays and O. sativa) infected with SRBSDV to rice seedlings. The transmission rates were first increased and then decreased with the increase of temperature. Macropterous adults transmitted SRBSDV from the viruliferous E. crusgalli, Z. may and rice plants to the healthy rice seedlings, and the infected rates of rice seedlings were 26.2, 18.8 and 23.7% at 15°C, 56.6, 64.6 and 53.6% at 25°C, and was 11.2, 10.2 and 7.3% at 35°C, respectively. Transmission capacity of brachypterous adults was significantly higher than that of macropterous adults at 15, 20 and 25°C (P<0.05), while transmission capacity of brachypterous adults was relatively lower compared with that of macropterous ones at 35°C. These results offer evidence on the transmission of SRBSDV via the vector S. furcifer among different host plants, which can be helpful to control Southern rice black-streaked dwarf disease by the appropriate cultural measures in South China.
  • WANG Yang-jie;HUANG Ji-kun ; WANG Jin-xia
    Journal of Integrative Agriculture. 2014, 13(4): 687-697. https://doi.org/10.1016/S2095-3119(13)60697-8
    Baidu(56)
    Under climate change, rising frequency and serious extreme weather events have challenged agricultural production. Designing appropriate adaptation measures to the extreme weather events require rigorous and empirical analysis. The overall goals of this study are to understand physical adaptation measures taken by farmers and the impacts of household and community assets on farmers’ adaptation when they face drought. The analyses are based on a unique data set collected from a household survey in three provinces in China. The survey results show that though not common on annual basis, some farmers did use physical adaptation measures to fight drought. Regression analysis reveals that both household and community assets significantly affect farmers’ adaptation behaviors. Improving households’ social capital and wealth, communities’ network and access to government’s anti-drought service can facilitate farmers’ adaptation to drought. Results indicate that community’s irrigation infrastructure and physical adaptation taken by farmers can substitute each other. Further analysis shows that the households taking adaptation measures have higher crop yields than those without taking these measures. The paper concludes with several policy implications.
  • LUO Yu, JIAO Yu-jie, ZHAO Xiao-rong, LI Gui-tong, ZHAO Li-xin , MENG Hai-bo
    Journal of Integrative Agriculture. 2014, 13(3): 533-540. https://doi.org/10.1016/S2095-3119(13)60709-1
    Baidu(54)
    Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500°C) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73% and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537% more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.
  • GU Zhen-xin, GUO Qiang-hui, GU Ying-juan
    Journal of Integrative Agriculture. 2012, 11(11): 1804-1816. https://doi.org/10.1016/S1671-2927(00)8715
    Baidu(53)
    Sulforaphane is a type of sulfur-containing isothiocyanates hydrolyzed from glucosinolates by myrosinase found in Brassica plants. Sulforaphane is a naturally occurring inducer of phase II enzymes in human and animal bodies to detoxify cancer-causing chemicals. Glucoraphanin is the precursor of sulforaphane and its content is greatly influenced by plant species and genotype, plant organs, pre-harvest factors, and post-harvest processing, thus sulforaphane formation is also directly influenced. Here, we review the formation mechanism of sulforaphane and the factors influencing sulforaphane formation. In the end, the future directions are also discussed.
  • YANG Jian-chang, ZHANG Hao, ZHANG Jian-hua
    Journal of Integrative Agriculture. 2012, 11(6): 920-926. https://doi.org/10.1016/S1671-2927(00)8614
    Baidu(52)
    Root system is a vital part of plant and regulates many aspects of shoot growth and development. This paper reviews how some traits of root morphology and physiology are related to the formation of grain yield in rice (Oryza sativa L.). Higher root biomass, root oxidation activity, and cytokinin contents in roots are required for achieving more panicle number, more spikelets per panicle, greater grain-filling percentage, and higher grain yield. However, these root traits are not linearly correlated with yield components. When these traits reach very high levels, grain filling and grain yield are not necessarily enhanced. High numbers of mitochondria, Golgi bodies, and amyloplasts in root tip cells benefit root and shoot growth and yield formation. Proper crop management, such as an alternate wetting and moderate soil drying irrigation, can significantly improve ultra-structure of root tip cells, increase root length density and concentration of cytokinins in root bleedings, and consequently, increase grain-filling percentage, grain yield, and water use efficiency. Further studies are needed to investigate the mechanism underlying root-shoot and root-soil interactions for high grain yield, the roles of root-sourced hormones in regulating crop growth and development and the effects of soil moisture and nutrient management on the root architecture and physiology.
  • WANG Jin-xia, HUANG Ji-kun , YANG Jun
    Journal of Integrative Agriculture. 2014, 13(1): 1-17. https://doi.org/10.1016/S2095-3119(13)60588-2
    Baidu(50)
    The purpose of this paper is to document the likely impacts of climate change on China’s agriculture and the current adaptation efforts made by government and farmers. The review of literature shows that climate change will have a significant impact on agriculture, primarily through its effect on crop yields. The extent of predicted impacts highly depends on the crop, the CO2 fertilization effect assumption and adaptation abilities. Market response to the production shocks resulting from climate change will lessen the impacts on agricultural production predicted by natural scientists. On adaptation, the government’s major efforts have been in the developing new technologies, reforming extension system and enhancing institutional capacity. Farmers do adapt to climate change, but their adaptation measures cannot fully offset the negative impacts of climate change. The paper concludes and makes implications for future studies.
  • HUANG Gao-bao, CHAI Qiang, FENG Fu-xue, YU Ai-zhong
    Journal of Integrative Agriculture. 2012, 11(8): 1286-1296. https://doi.org/10.1016/S1671-2927(00)8657
    Baidu(42)
    Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems: conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), notillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0- 12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield.
  • MENG Hong-qi, XU Ming-gang, Lü Jia-long, HE Xin-hua, LI Jian-wei, SHI Xiao-jun, PENG
    Journal of Integrative Agriculture. 2013, 12(11): 2092-2102. https://doi.org/10.1016/S2095-3119(13)60398-6
    Baidu(39)
    Long-term fertilization experiment provides the platform for understanding the proton budgets in nitrogen transformations of agricultural ecosystems. We analyzed the historical (1990-2005) observations on four agricultural long-term experiments in China (Changping, Chongqing, Gongzhuling and Qiyang) under four different fertilizations, i.e., no-fertilizer (control), sole chemical nitrogen fertilizer (FN), sole chemical phosphorous and potassium fertilizers (FPK) and chemical nitrogen, phosphorous and potassium fertilizers (FNPK). The significant decline in topsoil pH was caused not only by chemical N fertilization (0.29 and 0.89 ΔpH at Gongzhuling and Qiyang, respectively) but also by chemical PK fertilization (0.59 ΔpH at Gongzhuling). The enhancement of available nutrients in the topsoil due to long-term direct nutrients supply with chemical fertilizers was in the descending order of available P (168-599%)>available K (16-189%)>available N (9-33%). The relative rate of soil pH decline was lower under long-term judicious chemical fertilization (-0.036-0.034 ΔpH yr-1) than that under long-term sole N or PK fertilization (0.016-0.086 ΔpH yr-1). Long-term judicious chemical fertilization with N, P and K elements decreases the nutritional limitation to normal crop growth, under which more N output was distributed in biomass removal rather than the loss via nitrate leaching. We concluded that the N distribution percentage of nitrate leaching to biomass removal might be a suitable indicator to the sensitivity of agricultural ecosystems to acid inputs.
  • Reda H E Hassanien, HOU Tian-zhen, LI Yu-feng , LI Bao-ming
    Journal of Integrative Agriculture. 2014, 13(2): 335-348. https://doi.org/10.1016/S2095-3119(13)60492-X
    Baidu(39)
    Sound waves technology has been applied to different plants. It has been found that sound waves were at different frequencies, sound pressure levels (SPLs), exposure periods, and distances from the source of sound influence plant growth. Experiments have been conducted in the open field and under greenhouse growing conditions with different levels of audible sound frequencies and sound pressure levels. Sound waves at 1 kHz and 100 dB for 1 h within a distance of 0.20 m could significantly promote the division and cell wall fluidity of callus cells and also significantly enhance the activity of protective enzymes and endogenous hormones. Sound waves stimulation could increase the plant plasma-membrane H+-ATPase activity, the contents of soluble sugar, soluble protein, and amylase activity of callus. Moreover, sound waves could increase the content of RNA and the level of transcription. Stress-induced genes could switch on under sound stimulation. Sound waves at 0.1-1 kHz and SPL of (70±5) dB for 3 h from plant acoustic frequency technology (PAFT) generator within a distance ranged from 30 to 60 m every other day significantly increased the yield of sweet pepper, cucumber and tomato by 30.05, 37.1 and 13.2%, respectively. Furthermore, the yield of lettuce, spinach, cotton, rice, and wheat were increased by 19.6, 22.7, 11.4, 5.7, and 17.0%, respectively. Sound waves may also strengthen plant immune systems. It has been proved that spider mite, aphids, gray mold, late blight and virus disease of tomatoes in the greenhouses decreased by 6.0, 8.0, 9.0, 11.0, and 8.0%, respectively, and the sheath blight of rice was reduced by 50%. This paper provides an overview of literature for the effects of sound waves on various growth parameters of plant at different growth stages.
  • DENG Yu-song, XIA Dong, CAI Chong-fa, DING Shu-wen
    Journal of Integrative Agriculture. 2016, 15(8): 1863-1873. https://doi.org/10.1016/S2095-3119(15)61313-2
    Baidu(38)
        This study was designed to identify molecular markers single nucleotide polymorphisms (SNPs) of MHC B-F gene and SPOCK1) associated with Salmonella pullorum disease susceptibility/resistance. A two-stage case-control association study was used. In the first study, a small population comprising 401 Partridge chickens (201 cases and 200 controls) was used, and a total of 118 SNPs genotyped. In the second study, a bigger population comprising 1 075 Partridge chickens (527 cases and 548 controls) was used, and SNPs with significant effect determined in the first study were further analysed. In the first study, 8 SNPs were significantly associated with S. Pullorum disease susceptibility/resistance, however, after further analysis, only the SNPs rs15001532 and C.513A>T were found to be significantly associated with S. Pullorum disease susceptibility/resistance. The relative risk test demonstrated that the AA genotype of rs15001532 resulted in a higher risk of S. Pullorum infection, whereas birds with the TT genotype of C.513A>T were more susceptible to S. Pullorum infection. This research was based on the researches on human complex diseases. With help of these train of thoughts, some common animal diseases can be studied effectively and the process of candidate gene research for animal disease can be improved.