Collection
Rice
Journal
Publication year
Channels
Sort by Default Latest Most read  
Please wait a minute...
  • Select all
    |
  • LYUXiaoyan, LAOYingying, LIHuizhu, CAIZhixin, FURongfu
    Anhui Agricultural Science Bulletin. 2025, 31(6): 17-20. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.06.005

    To screen high quality and high yield rice varieties suitable for production in Jiangmen, Guangdong, a variety screening experiment was conducted on 7 rice varieties, namely Meixiangzhan No.2 (CK), Zhongxiang No.5, Jiangnongxiangzhan No.1, Huahang No.82, Yueyasimiao, Huahangyuzhan, and Yuehesimiao, to analyze their agronomic traits and yield performance in the study area. The results showed that the average growth period of each tested variety was between 124 and 127 days; mild occurrence of sheath blight in various varieties, including Zhongxiang No.5, Jiangnongxiangzhan No.1, and Huahangyuzhan with mild occurrence of white leaf blight, while other diseases did not occur; the rate of panicle formation was stronger in the Yuehesimiao. In terms of yield, the average yield of various varieties ranges from 5 382.5 to 6 750.0 kg/hm2, with the highest yield of Yueyasimiao, which increased by 25.4% compared to CK. Overall, the growth period, yield, and resistance of Yueyasimiao, Huahangyuzhan, Yuehesimiao, Huahang No.82, and Jiangnongxiangzhan No.1 were all relatively ideal and suitable for promotion and planting in Jiangmen and related areas.

  • ZHENGJing, CHENLi, JIANGZhaoquan
    Anhui Agricultural Science Bulletin. 2025, 31(6): 33-36. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.06.009

    The production practice was combined of high quality rice in the Lixiahe area of Yancheng, Jiangsu, and the cultivation techniques of high quality rice production from the aspects of planting method selection and variety selection were summarized and analyzed. The planting method should choose light and simplified machine insertion; select high quality rice varieties with high yield, high rice yield, good resistance, wide adaptability, and high stability; to achieve precise bed preparation, seed control, water control, and chemical control, in order to cultivate seedlings that meet high yield requirements and mechanical operation requirements; straw returning to the field and leveling, planting with reduced plant size and increased density, and multiple holes and fewer roots at a seedling age of 3.5 to 3.8 leaves; balance the ratio of organic and inorganic fertilizers, as well as the ratio of nitrogen, phosphorus, potassium, and silicon fertilizers, and apply fertilizers appropriately and timely; adopt alternating wet dry irrigation based on the growth of seedlings; coordinate agricultural control, biological control, physical control, and chemical control measures to timely prevent and control pests and diseases; pay attention to preventing cold damage and lodging during the growth process; harvesting rice at 95% maturity, followed by processing such as low temperature drying and low temperature refrigeration. Relevant cultivation techniques provide references for the production of high quality rice.

  • LIANGWenzhao, ZHOUShiyi, WEIRuiyan, SHILinya, LIUNaixin, YUQingtao
    Chinese Agricultural Science Bulletin. 2025, 41(9): 1-7. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0491

    To explore the effect of graphene oxide (GO) treatment on rice seed germination under salt stress, this experiment used the rice variety 'Harbin Japonica Rice 15' as the experimental material. Under normal conditions and salt stress (0.05 mol/L NaCl), GO was induced at different mass concentrations (0, 25, 50, 100 mg/L) to detect the changes in antioxidant enzyme activity, malondialdehyde, and osmotic regulator content of rice seeds after different treatments. The results show that: (1) low concentrations of GO (25 mg/L) can promote the germination of rice seeds, while high concentrations of GO (50, 100 mg/L) significantly inhibit their germination. 25 mg/L GO can increase seed vitality and improve germination rate under salt stress; (2) high concentrations of GO and NaCl combined treatment can further exacerbate the inhibitory effect of salt stress on rice seed growth, increase antioxidant enzyme activity, reduce malondialdehyde content, and alleviate oxidative stress response; (3) GO treatment promotes the synthesis and accumulation of osmotic regulators, increases the osmotic regulation ability and salt resistance of rice seeds, strengthens the salt tolerance of seedlings, and significantly improves their emergence and seedling efficiency in salt environments. Low concentration GO can promote rice germination, while high concentration GO has certain harm to rice growth. Especially under salt stress, high concentrations of GO can increase the toxicity of salt stress on rice growth. It is suggested that high concentration GO related fertilizers should be used with caution in rice production practice in saline alkali areas.

  • LIYangyang, CHENShuaimin, XUMinghong, CHIChang, MAWei, WANGYinping, SONGYan, FANZuowei, WUHaiyan
    Chinese Agricultural Science Bulletin. 2025, 41(9): 18-24. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0317

    To select the most effective microbial product for in-situ decomposition of rice straw under cool conditions in Northeast China, and to determine the optimal dosage of microbial product coupling urea, this study conducted comparative experiments, and used the decomposition rate of rice straw, biological characteristics and yield of rice as indicators to define the optimal microbial product and the dosage of urea. The results showed that the independently developed microbial product NKY showed better field application effects. The straw decomposition rates of Hongqi Farm and Wanchang Town were 68.8% and 67.2%, respectively, which were 38.5% and 35.5% higher than CK. The height, tiller number, and dry weight of rice were also increased, and the rice yield increased by 6.0% and 6.8%, respectively. The optimal dosage for coupling urea with microbial product NKY was 75 kg/hm2. Compared with no urea application, the straw decomposition rate increased by 8.7%, and the yield increased by 6.2%. In summary, the microbial product NKY not only has good degradation ability of rice straw, but also could promote crop growth and improve crop yield, which has a better application prospect.

  • CHENPengjun, ZHANGJiao, HANJijun, MIAOYuanqing, CUIShiyou
    Chinese Agricultural Science Bulletin. 2025, 41(9): 8-17. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0619

    A field experiment was carried out from June to November 2021 in tidal flat of Nantong, Jiangsu Province to study the effects of different exogenous silicon fertilizers spraying on rice yield, dry matter and nutrient accumulation and transport in various organs and rice quality, with ‘Nanjing 5055’ as the test variety. Five treatments were set up in the experiment, including spraying water treatment (CK), sugar alcohol silicon treatment (SF1), seaweed liquid silicon treatment (SF2), liquid silica-zinc fertilizer treatment (SF3) and highly active ionic liquid silicon treatment (SF4). The results showed that (1) compared with CK, rice yield under SF1, SF2, SF3 and SF4 increased by 9.24%, 7.31%, 0.28% and 3.64%, respectively, and reached a significant level under SF1. At the same time, the number of grains per panicle, the number of solid grains, the weight of thousand grains, the length of panicle and the density of grains were increased significantly under SF1 (P<0.05). (2) The above ground dry matter accumulation of rice at maturity was SF1>SF2>SF4>SF3>CK. At heading stage, nitrogen accumulation in the above-ground part and potassium accumulation in the upper part of the ground under SF1 and SF3 were significantly increased under each spraying treatment. Nitrogen accumulation in the lower panicle and above-ground parts of SF1, SF3 and SF4 at maturity was significantly increased (P<0.05). The distribution of nitrogen and potassium accumulation in each organ of rice at heading stage was in the order of stem sheath>leaf>ear. The distribution of nitrogen accumulation at maturity was in the order of spike>sheath>leaf, and the distribution of potassium accumulation was in the order of sheath>ear>leaf. (3) Compared with CK, leaf dry matter transfer (SF3) and ear dry matter increase (SF1, SF2 and SF3) were significantly increased. Nitrogen transfer in stem sheath (SF2, SF3 and SF4) and leaves (SF1) and nitrogen increase in panicle (SF1, SF3 and SF4) were significantly increased. The transfer volume of potassium in stem sheath (SF3) and leaf (SF1) and the increase of potassium in panicle (SF3) were significantly increased (P<0.05). (4) Rice yield was positively correlated with spike dry matter increase and nitrogen transfer, significantly positively correlated with dry matter accumulation and spike nitrogen accumulation at maturity, and significantly negatively correlated with leaf potassium accumulation. (5) Different exogenous silicon fertilizers spraying had no significant effects on the appearance and processing quality of shoal rice under the experimental conditions. Therefore, spraying appropriate exogenous silicon fertilizer (especially sugar alcohol silicon) on the leaf surface could significantly increase rice yield in this coastal mudflat area. Spraying exogenous silicon fertilizer mainly improves the number of grains per spike and the quality of 1000 grains, increasing the accumulation of dry matter and nitrogen in the rice spike.

  • WANGFeng, ZHUShijun, YINGHong, CHAIWeigang, DAIYaolu, YUANQing, JINShuquan
    Chinese Agricultural Science Bulletin. 2025, 41(9): 91-98. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0605

    To solve the practical problems in the existing “non-grain” cultivated land improvement technology, such as high cost and poor regional suitability, a field experiment was carried out in the typical “non-grain” reclaimed rice field in the hilly area of eastern Zhejiang Province. The effects of different organic amendments and combinations (T1: biochar based fertilizer, T2: potassium fulvic acid, T3: organic fertilizer + biochar based fertilizer, T4: organic fertilizer + potassium fulvic acid), and tillage depth (D: deep tillage with 20 cm, S: shallow tillage with 15 cm) on topsoil properties, rice yield and economic benefits were analyzed. The results showed that the application of different organic amendments could significantly increase the yield of rice, among which T4 and T3 had the best effects, especially under the condition of deep ploughing. Compared with the conventional control (S-CK), they could increase the yield by 3.7 t/hm2 (48.8%) and 3.4 t/hm2 (44.5%) respectively, and the economic benefit reached 2391-3101 yuan/hm2 in the current season. Deep ploughing decreased soil pH by 0.2 units on average, but significantly increased soil organic matter (SOM), total nitrogen (TN), alkali-hydro nitrogen (AN), available phosphorus (AP) and cation exchange capacity (CEC). Among them, the SOM in D-T4 and D-T3 increased by 11.5% and 11.3%, respectively, compared with S-CK. The correlation analysis showed that rice yield was significantly positively correlated with agronomic characters (effective panicle, panicle length, spikelet per panicle and seed setting rate) and soil fertility indexes (SOM, TN, AN, AP, AK and CEC) (P<0.01). Therefore, the organic amendments combinations of organic fertilizer and biochar based fertilizer or potassium fulvic acid, with moderate mechanical deep ploughing, can simultaneously achieve tillage layer reconstruction and directional fertilizer cultivation, and promote soil improvement efficiency in reclamation area. This technology has great potential to be popularized in the “non-grain” reclaimed rice field in hilly areas.

  • DONGLinlin, YANKai, SHENGXuewen, LUChangying, SHILinlin, WANGHaihou, WUZhenggui
    Chinese Agricultural Science Bulletin. 2025, 41(9): 99-106. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0624

    Soil water-soluble organic carbon (WSOC) changed with cultivation methods is of great significance to crop growth and soil carbon cycle. In this study, a field experiment was conducted to compare the effects of rotary tillage (RT) and no tillage (NT) on the content and spectral characteristics of WSOC during the key growth period of rice in rice-wheat rotation system in the Taihu Lake Region. The results showed that the content of soil organic carbon (SOC) in RT and NT treatments increased from 21.73 g/kg and 21.30 g/kg before rice planting to 21.95 g/kg and 23.49 g/kg after rice harvest, respectively. Meanwhile, the content of water-soluble organic carbon in RT and NT treatments increased from 1.74 g/kg and 1.66 g/kg before rice planting to 3.74 g/kg and 4.35 g/kg after rice harvest, respectively. No tillage for rice-wheat rotation system was more conducive to increasing soil carbon sequestration and water-soluble organic carbon. Under the both tillage methods, the SUVA254 and SUVA260 of WSOC after rice harvest decreased slightly compared to that before planting rice, and the SUVA254 and SUVA260 of NT were higher than those of RT, while E2/E3 and E3/E4 were both increased. No tillage was more conducive to improving the aromaticity and humification of WSOC than RT for rice-wheat rotation system. Compared to rotary tillage, no tillage was more conducive to improving the stability of WSOC and had a positive effect on increasing soil carbon sequestration in paddy soil of rice-wheat rotation system.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    JINYiDan, HENiQing, CHENGZhaoPing, LINShaoJun, HUANGFengHuang, BAIKangCheng, ZHANGTao, WANGWenXiao, YUMinXiang, YANGDeWei
    Scientia Agricultura Sinica. 2025, 58(6): 1043-1051. https://doi.org/10.3864/j.issn.0578-1752.2025.06.001

    【Objective】 Rice blast is one of the most devastating diseases of rice production. A broad-spectrum disease resistance gene Pigm-1 was identified but its functional pathway and interactors are unknown. The screening and identification of key proteins in the Pigm-1 signaling pathway will provide an important theoretical basis for rice disease resistance breeding. 【Method】 In this study, the decoy protein pGBKT7-Pigm-1-CC1-576 vector was constructed to detect the decoy protein self-activation, and the toxicity of the decoy protein was detected by separately transforming the plasmid pGBKT7 and pGBKT7-Pigm-1-CC1-576 into Y2H Gold yeast. The rice disease resistance R protein Pigm-1 was screened by cDNA expression yeast library induced by rice blast fungus. The sequencing results were compared and annotated by Rice Information GateWay (RIGW). The interaction of OsbHLH148 protein was verified by Luc, Co-IP and yeast two-hybrid assays, and the tissue expression of the corresponding gene of the interaction protein OsbHLH148 was analyzed by qRT-PCR. 【Result】 The self-activation test showed that the decoy protein pGBKT7-Pigm-1-CC1-576 did not self-activate when cotransformed with the AD plasmid, and the toxicity analysis showed that the decoy protein had little or no toxicity to yeast cells. A total of 124 proteins that may interact with Pigm-1 were obtained by screening the yeast library, and among these proteins, there are ethylene synthesis related, gibberellin synthesis related, active oxygen species clearly related, enzyme metabolism related, and some function unknown. The interaction between Pigm-1-CC1-576 and OsbHLH148 was verified by Luc, Co-IP and yeast two-hybrid methods. Further analysis showed that OsbHLH148 can be induced by blast fungus infection, and the tissue expression analysis showed that OsbHLH148 expression level was the highest in rice leaves at 6 weeks. 【Conclusion】 In this study, 124 proteins that may interact with Pigm-1 were obtained. One of these proteins, OsbHLH148, was selected and verified to interact with Pigm-1-CC1-576. Suggesting that OsbHLH148 may be involved in Pigm-1 mediated resistance of rice blast.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    JINYaRu, CHENBin, WANGXinKai, ZHOUTianTian, LIXiao, DENGJingJing, YANGYuWen, GUODongShu, ZHANGBaoLong
    Scientia Agricultura Sinica. 2025, 58(6): 1052-1064. https://doi.org/10.3864/j.issn.0578-1752.2025.06.002

    【Objective】 Rice (Oryza sativa L.) is a staple cereal crop for about half of the global population, with protein being the second-most significant nutritional component in rice grains. The storage proteins in rice grains mostly consist of glutelin, prolamin, globulin, and albumin, among which the content of easy-to-digest glutelin is the highest. Consequently, common rice increases the burden of kidney and accelerates the progression of renal disorders. The method of generating low-glutelin rice germplasm will provide novel genetic material for the cultivation of functional rice cultivars suitable for individuals with kidney diseases. 【Method】 We utilized Suxiu 867 (SX867), an elite japonica rice cultivar appropriate for cultivation in Jiangsu province, as a transgenic recipient to delete a fragment of approximately 3 500 bp between the B subfamily glutelin-coding genes GluB4 and GluB5 using CRISPR/Cas9-mediated gene editing technology. The large fragment deletion was identified by PCR using the primers corresponding to the flanking sequence of gene editing target sites, while sequence-specific primers for Cas9 and hygromycin resistance gene cassettes were used to identify the low-glutelin rice mutant absent of transgenic elements. The protein component contents of homozygous low-glutelin mutants were analyzed qualitatively and quantitatively, and the expression levels of glutelin-coding genes in rice grains were detected by quantitative PCR. The agronomic traits and quality traits of homozygous low-glutelin mutants and recipient cultivar cultivated under the same cultivation conditions were measured. 【Result】 Homozygous mutants with a 3 448 bp deletion between GluB4 and GluB5 genes were generated successfully. In the mutants, the relative proportion of glutelin decreased significantly, while that of prolamin and globulin increased significantly. The glutelin content of homozygous mutants decreased to 45.54%-49.75% compared to recipient cultivar, and the reduction level is comparable to LGC-1, a low-glutelin rice germplasm commonly used as a donor of low-glutelin trait in commercialized rice cultivars. The expression levels of B subfamily glutelin-coding genes in homozygous mutant were decreased significantly, and the changing trends was consistent with that of LGC-1 derived rice cultivar. Except that plant height decreased and grain length increased significantly, other measured agronomic and quality traits of homozygous mutants were not changed significantly compared to recipient cultivar. 【Conclusion】 Using CRISPR/Cas9-mediated gene editing technology, rice mutants with significant lower glutelin content free from transgenic elements were obtained successfully providing a convenient and quick method to generate low-glutelin germplasm.

  • WANGJunjiang, YINYuanhong, LUChusheng, LUZhanhua, CAIHaoyang, YEQunhuan, LIAOJiahui, LUYusheng, LIANGKaiming, FUYouqiang
    Chinese Agricultural Science Bulletin. 2025, 41(8): 1-10. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0540

    In order to investigate the effect of irrigation of the critical growth period on rice grain yield and water use efficiency, rice cultivar 'Yuehesimiao' was conducted with five irrigation treatments, namely, irrigation during mid-tillering (IMT), irrigation during panicle initiation (IPI), irrigation during heading (IHD), and irrigation during panicle initiation and heading periods (IPI+IHD), and the whole growth period flooding irrigation (CK). The effects of irrigation at different growth periods on tiller number, plant height, photosynthesis, grain yield and water use efficiency of rice was studied. The results showed that compared with CK treatment, rice grain yield in IMT, IPI, IHD and IPI+IHD treatments decreased by 97.0%, 37.9%, 34.7% and 21.9%, respectively. Productive panicle number in IPI, IHD and IPI+IHD treatments decreased by 28.6%, 25.7% and 31.4%, respectively, but no significant difference in IMT treatment. Spikelet per panicle and panicle length in IMT and IHD treatments decreased by 49.0%, 20.0% and 13.9%, 6.4% respectively. No significant difference in plant height, spikelet per panicle and panicle length was observed in the IPI and IPI+IHD treatments relatively to control. The setting rate in the IHD and IPI+IHD treatments increased by 22.9% and 10.7%, respectively. The net photosynthetic rate in IPI, IHD and IPI+IHD treatments increased by 27.3%, 29.6% and 32.4%, stomatal conductance increased by 45.5%, 24.1% and 42.8%, and transpiration rate increased by 33.9%, 23.6% and 31.5%, respectively. Intercellular CO2 concentration in IPI and IPI+IHD treatments increased by 0.8% and 4.1% respectively. Compared with the control, water use efficiency in IPI, IHD and IPI+IHD treatments increased by 13.6%, 19.9% and 14.6%, respectively. Irrigation during the mid-tillering period was beneficial to the increase of tiller number, irrigation during panicle initiation could increase the number of spikelets per panicle, and irrigation during heading period could increase the setting rate of rice. The panicle initiation and heading periods are critical periods for rice irrigation, which is conducive to minimizing the yield loss and improving water use efficiency. The results of the study are of great significance for water-saving, yield-enhancing and efficiency-enhancing rice cultivation in arid areas.

  • Mengyan Cao, Shaoping Ye, Cheng Jin, Junkang Cheng, Yao Xiang, Yu Song, Guorong Xin, Chuntao He
    Journal of Integrative Agriculture. 2025, 24(4): 0. https://doi.org/10.1016/j.jia.2024.07.035

    Winter planting green manures in southern China effectively improve soil properties and rice production through microbial community construction. However, the effects of soil communities of arbuscular mycorrhizal fungi (AMF) from different winter planting green manures on the soil properties and post-cropping rice production remain unclear. In this study, the soil AMF communities of three common winter planting patterns in Southern China, winter fallow, winter ryegrass (Lolium multiflorum L.), and winter Chinese milk vetch (Astragalus sinicus L.), were explored and their effects on post-cropping rice production were investigated. Compared with winter fallow, the winter ryegrass and winter Chinese milk vetch patterns could alleviate soil acidification, significantly increase soil AMF spore density, and improve the soil AMF community structure. Based on sterilized soil, rice production indicators such as thousand-seed weight, theoretical yield, and the grain amylose and total sugar contents of rice inoculated with AMF spores from winter Chinese milk vetch soil were 6.68-53.57% higher than those without AMF inoculation. Rice panicle weight, seed setting rate, and theoretical yield were 15.38-22.71% higher in the treatment with AMF spores from winter ryegrass soil than in the treatments with no AMF inoculation. In addition, the protein, amylose, and total sugar contents of rice grains were 14.92, 104.82, and 802.23 mg kg-1, respectively, which were 31.31, 14.25 and 34.47% higher than those without AMF inoculation. The AMF community dominated by Glomus and Acaulospora in winter Chinese milk vetch had a more positive effect on the improvement of rice yield, while the AMF community dominated by Glomus in winter ryegrass soil was more conducive to rice quality improvement. These findings have revealed the critical role of AMF communities from green manure in rice production, which lays the theoretical basis for a promising strategy to promote the sustainable development of southern winter agriculture.

  • Yuanhao Liu, Ting Sun, Yuyong Li, Jianqiang Huang, Xianjun Wang, Huimin Bai, Jiayi Hu, Zifan Zhang, Shuai Wang, Dongmei Zhang, Xiuxiu Li, Zonghua Wang, Huakun Zheng, Guifang Lin
    Journal of Integrative Agriculture. 2025, 24(4): 0. https://doi.org/10.1016/j.jia.2024.01.027
    The Elongator complex is conserved in a wide range of species and plays crucial roles in diverse cellular processes. We have previously shown that the Elongator protein PoELp3 was involved in the asexual development, pathogenicity, and autophagy of the rice blast fungus. In this study, we further revealed that PoElp3 functions via tRNA-mediated protein integrity. Phenotypic analyses revealed that overexpression of two of the tRNAs, tK(UUU) and tQ(UUG) could rescue the defects in DPoelp3 strain. TMT-based proteomic and transcriptional analyses demonstrated that 386 proteins were down-regulated in DPoelp3 strain compared with wild type strain Guy11, in a transcription-independent manner. Codon usage assays revealed an enrichment of Glutamine CAA-biased mRNA in the 386 proteins compared with the 70-15 genome. In addition to those reported previously, we also found that PoErp9, a sphingolipid C9-methyltransferase, was down-regulated in the DPoelp3 strain. Through an ILV2-specific integration of PoERP9-GFP into the wild type and DPoelp3 strain, we were able to show that PoErp9 was positively regulated by PoElp3 translationally but not transcriptionally. Functional analyses revealed that PoErp9 was involved in the fungal growth, conidial development, pathogenicity, and TOR-related autophagy homeostasis in P. oryzae. Taken together, our results suggested that PoElp3 acts through the tRNA-mediated translational efficiency to regulate asexual development, pathogenicity, sphingolipid metabolism, and autophagy in the rice blast fungus.
  • MOJunjie, ZHENGJiacheng, CAIJiwei, LIUJiawei, FENGYongcheng
    Chinese Agricultural Science Bulletin. 2025, 41(7): 1-8. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0413

    Further understanding the genetic regularity of rice harvest index in different segregating generations is beneficial to provide theoretical references for rice breeding based on the rice harvest index. In this research, isolated descendants from four distinct rice hybrid combinations were selected based on their harvest index. And then the coefficient of variation for main agronomic traits and the selection efficiency regarding the harvest index were subsequently compared and analyzed across different generations. The characteristics such as SPAD value at booting stage, plant height, and panicle length exhibited stability among different rice materials. In contrast, there was considerable variability in sword leaf length, thousand-grain weight, seed setting rate, and harvest index among hybrid rice progeny; however, these four traits remained stable in their parental lines. Notably, aboveground biological yield and panicle number per plant displayed significant variation both in hybrid parents and their offspring. The generalized heritability of the harvest index for F3, F3 lines and F4 lines across all tested hybrid combinations exceeded 97%. Furthermore, selection efficiency for the harvest index in F4 lines derived from ‘Hongxin-1S/Yuxiangyouzhan’, ‘Hongxin-1S/FL478’, and ‘Hongxin-1S/HD-YX’ surpassed that observed in their respective F3 and F3 lines; thus indicating a pronounced effect of single-plant selection based on harvest index within these three hybrids. Conversely, single-plant selection among offspring of ‘Hongxin-1S/Guanghong 3’ with high harvest indices did not enhance selection efficiency. It was effective to select individual plant with elevated harvest index for most of the tested rice materials from F2 generation, which could significantly improve the selection efficiency of harvest index.

  • Crop Science
    Rui Tang, Qinglin Tian, Shuang Liu, Yurui Gong, Qingmao Li, Rui Chen, Linglin Wang, Fengyi Hu, Liyu Huang, Shiwen Qin
    Journal of Integrative Agriculture. 2025, 24(3): 1001-1016. https://doi.org/10.1016/j.jia.2023.11.031
    Oryza longistaminata is an African wild rice species with valuable agronomic traits and the donor parent of perennial rice.  Endophytic bacteria play an important role in host health, adaptive evolution and stress tolerance.  However, endophytic bacterial communities in Olongistaminata and their plant growth-promoting (PGP) effects on the perennial rice of Olongistaminata offspring are poorly understood.  In this study, the endophytic bacterial diversity, composition and network structures in the root, stem, and leaf tissues of Olongistaminata were characterized using Illumina sequencing of the 16S rRNA gene.  The results suggested that Olongistaminata contains a multitude of niches for different endophytic bacteria, among which the root endosphere is more complex and functionally diverse than the stem and leaf endospheres.  Tissue-specific biomarkers were identified, including Paludibaculum, Pseudactinotalea and Roseimarinus and others, for roots, Blautia for stems and Lachnospiraceae NK4A136 for leaves.  The endophytic bacterial network of Olongistaminata was reassembled for various functions, including degradation/utilization/assimilation, detoxification, generation of precursor metabolites and energy, glycan pathways, macromolecule modification and metabolism.  A total of 163 endophytic bacterial strains with PGP traits of potassium release, phosphate solubilization, nitrogen fixation, siderophore activity, indole-3-acetic acid (IAA) production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity were isolated from Olongistaminata.  Eleven strains identified as Enterobacter cloacae, Enterobacter ludwigii, Stenotrophomonas maltophilia, Serratia fonticola, and Bacillus velezensis showed stable colonization abilities and PGP effects on perennial rice seedlings.  Inoculated plants generally exhibited an enhanced root system and greater photosynthesis, biomass accumulation and nutrient uptake.  Interestingly, two strains of Ecloacae have host genotype-dependent effects on perennial rice growth.  The results of this study provide insights into the endophytic bacterial ecosystems of Olongistaminata, which can potentially be used as biofertilizers for sustainable perennial rice productivity.



  • Crop Science
    Jia Wu, Luqi Zhang, Ziyi Wang, Fan Ge, Hao Zhang, Jianchang Yang, Yajie Zhang
    Journal of Integrative Agriculture. 2025, 24(3): 1030-1043. https://doi.org/10.1016/j.jia.2023.12.016

    Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.  This study explored how various dry cultivation methods could improve rice quality while balancing yield to maintain sustainable rice production.  A japonica upland rice cultivar and a japonica paddy rice cultivar were cultivated in the field with three cultivation methods: plastic film mulching dry cultivation (PFMC), bare dry cultivation (BC), and continuous flooding cultivation (CF) as control.  There was no significant difference in upland rice yield between PFMC and BC, nor in paddy rice yield between PFMC and CF.  Compared with CF, the two varieties’ yields decreased significantly with BC.  Dry cultivation, especially PFMC, could decrease the active filling period, chalky rice rate, chalkiness, amylose content, gel consistency, breakdown viscosity, the ratio of glutelin to prolamin, and leaf senescence while increasing water use efficiency, protein components content, setback viscosity, grain starch branching enzyme (Q-enzyme) activity, and average filling rate.  Compared with paddy rice, upland rice had a lower yield, shorter active filling period, lower chalkiness grain rate and gel consistency, higher amylose content, breakdown viscosity, protein components content, and average filling rate.  Grain Q-enzyme activity and grain-filling parameters were closely related to rice quality.  Reasonable dry cultivation methods could balance yield and quality, especially by improving rice’s nutritional and appearance quality.  

  • JIANGJuying, TANGQiyuan
    Anhui Agricultural Science Bulletin. 2025, 31(4): 20-25. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.04.005

    To screen rice varieties suitable for the “rice-ratooning rice-rapeseed” planting model, 13 rice varieties including Renyou 6, Zhenzaoyou 939, and Jiyou 1127, etc. were used as materials (with Lingliangyou 268 as the control), and a selection experiment of regenerated rice varieties under the “rice-ratooning rice-rapeseed” model was conducted in Changsha (research area A) and Yiyang (research area B), Hunan Province, determine indicators such as reproductive period, yield, and yield composition. The results showed that, except for Shengliangyou 358, all other varieties had suitable growth periods for planting in the study area and could safely achieve full panicle. In research area A, the annual yields of Renyou 6 and Quanzaoyou 1606 were 14.00 and 14.27 t/hm2, respectively, which increased by 5.34% and 7.37% compared to the control. In research area B, the annual yields of Renyou 6, Lingliangyou 741, and Quanzaoyou 1606 were 10.58, 10.56, and 10.76 t/hm2, respectively, an increase of 7.65% to 9.68% compared to the control. The above varieties all mature before mid October and can safely transition the rapeseed crop. Overall, Renyou 6 and Quanzaoyou 1606 performed well in Changsha, Hunan Province, while Renyou 6, Lingliangyou 741, and Quanzaoyou 1606 performed well in Yiyang, Hunan Province. They are suitable for planting regenerated rice varieties in the cooperative “rice-ratooning rice-rapeseed” planting model, and can be selected according to local planting conditions in each region.

  • HuangHuiyong
    Anhui Agricultural Science Bulletin. 2025, 31(4): 26-29. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.04.006

    The large-scale planting performance of drought resistant rice variety Hanyou 73 was combined in Donghu Production Base, Dongqiao Town, Huian County, Xiamen, Fujian Province, its “rice+vegetable” water-dry rotation cultivation techniques and its advantages in arid land were summarized and analyzed. This variety was planted in a “rice+vegetable” rotation in the research area, with a total growth period of about 128 days and resistant to bacterial leaf blight and rice blast disease, with good drought resistance; the dry grain yield of rice was 7 542.75 kg/hm2. Dryland cultivation techniques include land preparation, application of base fertilizer, and rotary tillage; after seed mixing or seedling cultivation, live broadcasting or waterless machine transplanting is carried out; arrange micro sprinkler irrigation pipe belts in the field according to the walking route of the rice transplanter wheels; after emergence, water the seedlings with water for greening, tillering, and heading filling to improve seedling quality and rice seed setting rate; according to the seedling situation in the field, apply tillering fertilizer, jointing fertilizer, and heading fertilizer to cultivate strong seedlings; dryland has more grass damage than paddy fields, and generally adopts measures such as closed weeding as the main method, chemical pesticides as auxiliary, and manual removal and remediation for prevention and control; according to local pest and disease monitoring information, timely prevention and control of diseases and pests such as sheath blight and rice planthopper. The application of the “rice+vegetable” water-dry rotation model and dryland waterless machine transplanting technology has technical management advantages such as saving labor and reducing consumption, facilitating water control, and improving fertilizer utilization efficiency; and social benefits such as improving farmland utilization efficiency, conserving water resources, and improving soil environment. This article provides a reference for the promotion and application of the “rice+vegetable” water-dry rotation model in relevant region’ dry land.

  • YEGuanbao, GUOFeisheng, CHENGuanhao
    Anhui Agricultural Science Bulletin. 2025, 31(4): 92-96. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.04.019

    The types of rice pests and diseases, as well as their occurrence rules in Huazhou City, Guangdong Province, were investigated in this study, to provide a basis for prediction, forecasting, and green control measures. Based on multi-year survey data and historical records, the species of rice pests and diseases in Huazhou from 1980 to 2023 were investigated, and the occurrence and epidemic patterns of major pests and diseases, and their causes were analyzed. It was revealed that a total of 55 types of rice pests and diseases were present in the region, comprising 21 diseases and 34 pests. Among the diseases, fungal diseases were found to be the most prevalent, with 12 types accounting for 57.1% of the total. Leaf-eating and sap-sucking pests were identified as the most common among the pests, with 12 types each, both accounting for 35.3% of the total. A preliminary exploration was conducted into the regularty of epidemic of major rice pests and diseases in the region over the years, revealing differences in the severity of pests and diseases damage across different decades. In the 1980s, severe damage was caused by pests such as Tryporyza incertulas, Nilaparvata lugens, Thrips oryzae, Orseoia oryzae and diseases such as rice blast, bacterial leaf blight, sheath blight, false smut, and rice gall dwarf disease, while other pests and diseases were relatively mild. From the 1990s onwards, an increase in severity was observed for Nilaparvata lugens, Cnaphalocrocis medinalis, sheath blight, bacterial leaf streak, and rice orange leaf disease. In the 2020s, Sesamia inferens, Chilo suppressalis, bacterial leaf streak, sheath blight, bacterial leaf blight, and southern rice black-streaked dwarf virus were found to have become more prevalent. It was concluded through a comprehensive analysis that the occurrence and evolution of these rice pests and diseases were mainly driven by a combination of three factors: the host plant (crop resistance), pathogenic organisms (or initial pest sources), and environmental conditions (including meteorological conditions, cultivation practices, and farming systems). It was also noted that different pests and diseases had their own specific factors contributing to their evolution. A reference was provided by this study for improving the management of rice pests and diseases in the region and for promoting the sustainable development of agriculture.

  • LINGBo, LIXiangyi, LIANGYingying, WANGHongchao, CHENXiaoling, XIEZhanwen, ZHANGYuting, CHENGZuxin, LINLihui
    Chinese Agricultural Science Bulletin. 2025, 41(6): 1-9. https://doi.org/10.11924/j.issn.1000-6850.casb2023-0899

    The lodging resistance of rice is a complex character, and the analysis of its genetic effect is valuable for improving the lodging resistance of rice. The genetic patterns and parameters of 16 lodging resistance traits in indica and japonica crossbred progeny were analyzed by using additive and dominant genetic model of plant quantitative traits. The variation of additive variance in the ratio of main effect of 9 traits ranged from 49.9% to 72.1%. The dominant variance in the ratio of dominant effect of 7 traits ranged from 48.2% to 87.1%. The additive and dominant variances of 9 traits accounted for significant or extremely significant phenotypic variances, which were controlled by both additive and dominant effects of genes. The 8 characters, such as basal folding resistance and sheath leaf thickness, were negatively correlated with lodging index, which was conducive to improving basal folding resistance and toppling resistance of rice. Indica japonica intermediate type parents have strong lodging resistance heterosis and high breeding value. Effective use of the genetic characteristics of each character has important guiding significance for breeding lodging resistant indica and japonica hybrid generation.

  • WANGMingjiao, MAORuiqing, KUANGNa, CHENYumei, ZOUDan, ZHANGMing, XIAOFangxi, LIUGui
    Chinese Agricultural Science Bulletin. 2025, 41(6): 94-99. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0458

    To understand the current status of Cd contamination and regulation in rice, this review comprehensively summarizes the following aspects: the absorption and translocation patterns of Cd in rice, Cd accumulation characteristics in different rice varieties and plant organs, the impacts of Cd on rice yield and quality, the effects on seed germination, as well as the influences on rice growth and physio-biochemical processes. Additionally, mitigation strategies for reducing Cd accumulation are systematically discussed. Based on China's current situation of rice Cd contamination, future research directions are proposed: (1) developing novel in-situ passivation materials, such as nano-adsorbent materials, which should have the characteristics of eco-friendly, cost-effective, high-efficiency, and user-friendly features; (2) creating more scientifically sound soil remediation technologies that can efficiently remove various heavy metals without damaging soil structure and ecological balance; (3) employing novel molecular breeding techniques to cultivate Cd-tolerant and stable ultra-low Cd-accumulating rice varieties, along with developing corresponding cultivation practices. This study aims to provide valuable references for Cd contamination control.

  • ZHANGHui, YANHuiyuan, SHIYaying, ZHAONana
    Journal of Agriculture. 2025, 15(2): 22-26. https://doi.org/10.11923/j.issn.2095-4050.cjas2024-0016

    In order to explore the pollution status and health risks of heavy metals in rice grains in a county of southern Henan, 68 rice grain samples were collected in the area in September 2021. The contents of chromium, arsenic, cadmium, lead, and mercury were determined by inductively coupled plasma mass spectrometry (ICP-MS-TQ) and direct mercury detection. The risk degree of heavy metals in rice was evaluated by single factor and Nemerowcomprehensive pollution index method, and the potential health risk of heavy metals from rice grains was evaluated by target hazard quotient (THQ) promoted by US EPA. The results showed that the average content of heavy metals in 68 rice grains did not exceed the Chinese Food Hygiene Standards, but the arsenic and cadmium contents in some samples exceeded the standards. The comprehensive pollution index (PN) of heavy metals in rice grain was 0.49, which was safe. ADD of adults and children was higher than RfD, and hazard quotients (HQ) of As were 3.11 and 4.80, which indicated that there was a certain risk of arsenic content in rice grains. The total hazard index (HI) of heavy metals to the exposed population was greater than 1, indicating that the long-term consumption of the rice by local residents may cause adverse health effects. In summary, the rice grain samples in the research area have been contaminated with arsenic, posing certain health risks. The local government needs to strengthen dynamic monitoring of the rice planting process, pay attention to the changes in the form and effective state of arsenic, ensuring food security.

  • XIAXianghua, WENGTongxiang, RENDaisheng, TANGXiuzhu, TAOYongshou
    Anhui Agricultural Science Bulletin. 2025, 31(3): 11-14. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.03.003

    The characteristics, suitable planting areas, cultivation techniques, and high-yield seed production techniques of Quanxiangyou 89 were summarized and analyzed based on its production practice. This variety is planted in the upper, middle, and lower reaches of the Yangtze River and exhibits characteristics such as suitable growth period, excellent rice quality, and high-yield; it is suitable for planting in areas with low incidence of rice blast disease, such as Pingba hilly rice growing areas in Sichuan Province and mid to low altitude indica rice growing areas in Yunnan Province. The high-yield cultivation techniques include early sowing in time and cultivating multi-tiller seedling; heavy application of bottom fertilizer, timely topdressing; dry and wet alternate pipe water and timely pest control. High-yield seed production techniques include post tobacco seed production in areas with an altitude of 250-500 meters; according to the different seed production seasons, ensure that the parental sowing difference period is between 6.5 and 7.5 leaves; soaking seeds with pesticides, spraying paclobutrazol, etc., to promote the health, dwarfism, and multiple tillering of seedlings; arranging a parent to parent ratio of 1∶8; managing fertilizer and water according to the growth of seedlings in the field; timely prevention and control of diseases and pests such as neck blight and rice planthopper based on actual field investigations and local pest and disease reports; adopting the method of young ear peeling to predict flowering period, it is advisable to use the same period as the parents in the early stage of young ear differentiation; spraying gibberellin when the panicle reaches 15%; pay attention to removing impurities and maintaining purity throughout the entire seed production process; harvesting begins when 75% of the seeds are ripe and dried promptly after harvesting. This article provides references for the demonstration and promotion of high-yield seed production techniques for Quanxiangyou 89.

  • NIUWenjing, FANMingyuan, ZHOUJin, TIANShuai, WANGJiansheng
    Anhui Agricultural Science Bulletin. 2025, 31(3): 15-18. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.03.004

    Based on the rice production practice in the Southern Jiangsu Province, the high-quality and high-yield cultivation techniques of rice and their promotion strategies were summarized and analyzed. High-quality and high-yield cultivation techniques include selecting varieties with high-quality, high-yield, strong resistance, and wide adaptability according to local conditions; making preparations for seedling field configuration, nutrient soil (substrate) preparation, seed treatment, and scientific sowing; water management, fertilization management, and pest control of seedbeds; adjusting the planting distance and seedling amount of transplanting machinery according to the variety type to achieve precise cultivation; field management needs to strengthen the supporting ditch system to reduce drainage and waterlogging, timely and appropriately fertilize according to the growth process and seedling growth of rice, and adopt comprehensive control measures of ecological regulation and scientific medication for the prevention and control of diseases and pests such as sheath blight, rice blast disease, rice planthopper, and stem borer; timely use machinery for harvesting, and pay attention to moisture and mold prevention during storage. Corresponding promotion strategy includes strengthening publicity and guidance, providing financial support, etc., to motivate planting subjects; keeping up with the trend of technological development, improving technical points, and implementing key technologies; constructing high-yield demonstration area, demonstrating the application of high-yield and high-efficiency cultivation techniques; carrying out on-site observation, technical lectures, and skill competitions to strengthen technical training. This article provides a reference for the promotion and application of high-quality and high-yield rice cultivation techniques in related rice growing areas such us Southern Jiangsu Province.

  • CHENWeinan, GONGMengmeng, KUIXiu
    Anhui Agricultural Science Bulletin. 2025, 31(3): 6-10. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.03.002

    To investigate the absorption and utilization of fertilization between single season rice fields under different fertilization methods, Guanliangyouhuazhan was used as the material, 9 different fertilization treatments were set up (PK, conventional fertilization nitrogen free zone; NK, conventional fertilization in phosphate free areas; NP, conventional fertilization in potassium free areas; NPK, conventional fertilization in the entire application area; PK1, deep lateral fertilization in nitrogen free areas; NK1, deep lateral fertilization in phosphate free areas; NP1, deep lateral fertilization in potassium free areas; NPK1, deep lateral fertilization in the entire application area; blank area, no fertilization), to determine the effects of each treatment on rice agronomic traits, yield, and fertilizer utilization efficiency. The results showed that under the same fertilizer type and quantity conditions, the ear length, total number of grains per ear, and seed setting rate in the mechanical side deep fertilization area were higher than those in the conventional fertilization area. The NPK1 treatment had the highest plant height, ear length, total number of grains per ear, and seed setting rate. Compared with conventional fertilization, mechanical side deep fertilization had increased grain yield at the same fertilization level; the highest grain and stem leaf yield was achieved with NPK1 treatment. The utilization rates of nitrogen, phosphorus, and potassium fertilizers in conventional fertilization were 36.95%, 31.07%, and 42.50%, respectively, while the utilization rates of nitrogen, phosphorus, and potassium fertilizers in mechanical side deep fertilization were 45.18%, 38.59%, and 49.99%, respectively. Overall, the application of mechanical side deep measurement for nitrogen, phosphorus, and potassium fertilizer application can achieve higher rice yields and higher fertilizer utilization efficiency.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    LILu, XIEZhuang, XIEKeYing, ZHANGHan, ZHAOZhuoWen, XIANGAoNi, LIQiaoLong, LINGYingHua, HEGuangHua, ZHAOFangMing
    Scientia Agricultura Sinica. 2025, 58(3): 401-415. https://doi.org/10.3864/j.issn.0578-1752.2025.03.001

    【Objective】Rice grain size is a quantitative trait controlled by multiple genes. They can be dissected into a single segment substitution line (SSSL), which is of great significance for their genetic mechanism study and breeding by design. 【Method】Z492, a chromosome segment substitution line in the genetic background of Nipponbare, was used as material to dissect QTL for rice grain size by mixed linear model (MLM) method. 【Result】The F2 population was constructed from Nipponbare/Z492 to identify four QTL for grain size, including qGL6 and qGL7 for grain length and qRLW7 and qRLW12 for rate of grain length to width. Then three single-segment substitution lines (SSSL, S1-S3) and 3 dual-segment substitution lines (DSSL, D1-D3) carrying these QTL were further constructed. And the SSSL were then used to detect eight QTL for grain size, including qGL6, qGL7 and six newly identified QTL (qGW6, qRLW6, qGW7, qGWT7, qGL12, qGW12). Simultaneously, the genetic model of different QTL in 3 DSSL were analyzed. The results showed that interaction of qGL6 (a=0.26 mm) and qGL7 (a=0.21 mm) produced -0.21 mm of grain length epistatic effect, which resulted in the genetic effect (0.26 mm) of D1 equal to the additive effect of each QTL. Thus, the grain length (7.98 mm) of D1 displayed no difference from those (7.89 and 7.98 mm) of S2 with qGL7 and S1 containing qGL6, while significantly longer than that (7.47 mm) of Nipponbare. The result indicated that it is not necessary to pyramid qGL6 and qGL7 in breeding by design for increasing grain length. qGW6 (a=0.07 mm) and qGW12 (a=0.06 mm) belonged to independent inheritance in D2, thus, the genetic effect (0.13 mm) after pyramiding of qGW6 and qGW12 caused the grain width (3.65 mm) of D2 broader significantly than any of the SSSL with the single QTL. So, qGW6 and qGW12 can be selected to increase grain width in breeding by design. Interaction of qGW7 (a=0.11 mm) and qGW12 (a=0.06 mm) yielded -0.10 mm of epistatic effect, causing the grain width genetic effect (0.07 mm) of D3 parallel to the additive effect of qGW12. Thus, the grain width (3.59 mm) of D3 exhibited no difference with that (3.56 mm) of S3 carrying qGW12, while wider significantly than that (3.44 mm) of Nipponbare and narrower significantly than that (3.66 mm) of S2. 【Conclusion】It is very necessary for breeding by design to identify QTL for different important traits using SSSL and DSSL. Pyramiding different QTL produce various genetic models. Some display independent inheritance, and others exhibit various epistatic effects. In addition, to cross with S1 and S3 can realize the goal of longer, wider and heavier rice grain, and to cross with S1 and S2 can reach the target of heavier grain weight, while to cross with S2 and S3 have no any effects in grain size.

  • ZHAOGuozhen, LIUWeihua, LIUSiyu, DONGLinbo, LILindong, CHENYumin
    Chinese Agricultural Science Bulletin. 2025, 41(5): 1-6. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0177

    The yield and agronomic traits of rice are affected by the cultivation environment and their adaptability, and the varieties with wide adaptability are less affected by the cultivation environment. This study aims to clarify the adaptability of ‘Yunjing 37’, a new japonica rice variety with good eating quality. The stability of yield and agronomic traits of ‘Yunjing 37’ and control varieties were analyzed by AMMI model, which planted in 6 sites in Yunnan Province for two consecutive years. All traits showed highly significant differences between varieties and environment, along with significant interaction effects between varieties and environment. Based on the stability parameters ASV, Di, WAASBi, the grain number, seed setting, 1000-weight, plant height, length and angle of the flag leaf, which were closely related to yield and plant type, ‘Yunjing 37’ showed the best stability among the four varieties. This indicates that different environmental conditions have relatively little influence on the yield and plant type of ‘Yunjing 37’. Therefore, ‘Yunjing 37’ has wide adaptability and is suitable for widespread application in Yunnan japonica rice area.

  • HUANGMiao, YANGGuotao, DIAOYan, ZHANGLei, YANYu, LIYu, XUWei, YANGLiang
    Chinese Agricultural Science Bulletin. 2025, 41(5): 103-109. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0509

    To study the environmental pollution of paddy fields in a region of Sichuan, this paper focused on paddy soil and rice as the main research objects. A total of 216 soil and rice samples were collected from the area, and the heavy metal pollutants in soil and rice in the study area were evaluated by testing the content of eight heavy metal elements, namely arsenic, lead, cadmium, chromium, mercury, copper, zinc and nickel in soil, and the content of five heavy metals, namely arsenic, lead, cadmium, chromium, and mercury in rice, using the single-factor pollutant index method and the Nemero composite pollutant index method, as well as performing the quantitative analysis of the association between various heavy metal elements in soil and rice. The results showed that: (1) the average content of cadmium and mercury in the soil of this study area was 0.47 and 0.98 mg/kg, respectively, which exceeded the standard, and their exceedance rates were 27.78% and 34.26%, respectively. The combined pollution index of Nemero in this study area was 1.11 mg/kg and the pollution level was mild. (2) There were significant correlations between the eight elements in the soil and the pathways of heavy metal accumulation might be the same. The coefficient of variation of soil Hg was 163.20%, which was highly variable, indicating that local pollution sources had a strong influence on heavy metals in soil, and the exceeding of Hg content in soil was mainly anthropogenic. (3) Cadmium, chromium and lead in rice had exceeded the standards, with exceedance rates of 19.44%, 3.70% and 19.44%, respectively. The study shows that the degree of heavy metal enrichment in rice has some correlation with soil heavy metal content and is related to the chemical form of heavy metals. It has certain guiding significance for food safety and heavy metal pollution remediation and treatment.

  • ZHONGWeijie, CHENJie, LIUHui, ZHUZhenquan, RUANYang, MAShuaipeng, LIUXiangdong, LIUYujia, LIXiang
    Anhui Agricultural Science Bulletin. 2025, 31(2): 1-9. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.02.001

    The study subjected 20 Ting’s rice varieties, including P0340, CII141, and R289 were treated with high temperature stress during seed germination,normal culture was used as control, 10 key germination indexes such as germination potential, germination rate, and root and shoot length were measured. By using the membership function comprehensive evaluation method and grading evaluation value, the heat resistance comprehensive evaluation was carried out. Meanwhile, correlation analysis, regression analysis and cluster analysis were carried out, combined with the determination of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and the activity analysis of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), the differences of growth indexes and physiological indexes of different rice varieties at germination stage were discussed, so as to screen rice varieties with strong heat resistance.The results showed that after high temperature treatment, the growth indexes such as germination potential of rice were different between varieties and treatments.In terms of heat resistance comprehensive evaluation, P0340 ranked first, showcasing strong heat tolerance, while Y595 ranked last, indicating weak heat tolerance. Correlation analysis and regression analysis established that germination rate and seedling dry weight could be used as important indexes for heat resistance identification.According to the cluster analysis, the heat resistance of the rice varieties tested was divided into 5 categories:extremely strong, strong, medium, weak and extremely weak. Among them, the variety with strong heat resistance was P0340, the varieties with strong heat resistance were CII141, R289, and Y1544, 10 varieties with medium heat resistance included R107 and Δ133, etc., and 5 varieties with weak heat resistance included PII140 and PII21,etc. The very weak heat resistance variety was Y595. In terms of physiological indexes, compared with control, under high temperature stress, H2O2 and MDA contents of P0340 increased less, the difference was not statistically significant (P>0.05). The activities of SOD, CAT, and POD in P0340 significantly increased compared to the control (P<0.05). These findings suggest that P0340 displays strong heat tolerance during the germination stage, characterized by minimal accumulation of reactive oxygen species and enhanced antioxidant capacity. In conclusion, the identification of the high heat tolerance rice variety P0340 in this study offers a valuable genetic resource for the development of new heat tolerance varieties.

  • WENGFei, WANGYi, LIQingkui, XUNaixia
    Anhui Agricultural Science Bulletin. 2025, 31(2): 10-13. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.02.002

    To investigate the effect of spraying foliar silicon fertilizer application on the lodging resistance of rice stems, Ningjing 8 was selected as the material for field experiments, and 3 concentrations of foliar silicon fertilizer were set up, including 0 (CK), 100 and 200 mg/L. The mechanical indexes of lodging resistance, such as breaking moment M, internode configuration, and internode fullness, such as stem thickness, wall thickness and internode length, were measured. The results showed that compared with CK, the fracture moment M, section modulus Z, and bending stress BS of rice stem were increased by spraying 200 mg/L silicon fertilizer on the leaf surface. The stem diameter, inner and outer diameters of main and short axes of rice were increased. There was no significant effect on plant height, but the length between the first, second, and third segments of the base was significantly reduced. It had little effect on basal internode fullness. In conclusion, reasonable spraying of foliar silicon fertilizer can improve the mechanical strength of rice stems and the lodging resistance by increasing the stem diameter, the inner and outer diameter of the main and short axes of rice, while reducing the length between the first, second, and third nodes of the base. The effect of 200 mg/L foliar silicon fertilizer treatment is better.

  • XIAXianghua, RENDaisheng, DINGWeidong, WENGTongxiang, TANGXiuzhu
    Anhui Agricultural Science Bulletin. 2025, 31(2): 14-17. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.02.003

    Y Liangyou 919 is an indica two-line hybrid rice variety selected from Y58S as the female parent and R919 as the male parent,the characteristics of its parents and high-yield seed production techniques were introduced. Y58S is a widely adaptable rice photoperiod temperature sensitive sterile line with excellent compatibility and high breeding yield; R919 is a dominant recovery line with lodging resistance, disease resistance and strong coordination force. Y Liangyou 919 can be used for post tobacco seed production in areas with an altitude of 300-500 meters in Northwest Fujian Province. The high-yield seed production techniques includes reasonable arrangement of the sowing time difference between the father and mother plants, with the father plant sowing in mid May and the mother plant sowing in mid June being suitable; choose fields that are windward and sunny, have convenient drainage and irrigation, and have a medium to high fertility level as seedling fields. Use appropriate sowing rates, soak seeds with disinfectants, apply sufficient base fertilizer, and timely and appropriate topdressing. Scientifically manage water and prevent diseases, pests, and weeds in a timely manner to cultivate strong seedlings; after harvesting tobacco leaves, timely plow and weed the fields, and transplant them, with a parent to child ratio of 1∶8; the full fertility period of the field, shallow water transplanting, inch water greening, thin water tillering, sufficient sun drying of seedlings, inch water booting, and dry and wet strong seeds should be achieved; apply sufficient basal fertilizer and apply appropriate topdressing according to the growth of the seedlings; timely prevention and control of diseases and pests such as rice sheath blight, rice leaf roller, and neck blight based on the actual situation in the field and local pest and disease monitoring; the ideal flowering period for seed production of this variety should meet the standard that the male parent’s initial flowering period is 2 days later than the female parent’s, and should be adjusted in a timely manner according to the actual situation in the field; when the number of spikes reaches 25% to 30%, spray “920” plant growth regulator to ensure uniformity and pollination, and improve the fruiting rate; timely remove impurities and maintain purity, eliminate premature and abnormal plants; after the flowering is completed, promptly cut off the male parent and harvest 90% of the seeds in the field when they are ripe. This article provides references for high-yield seed production and promotion planting of hybrid rice.

  • DENGXianghong
    Anhui Agricultural Science Bulletin. 2025, 31(2): 97-100. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.02.018

    The distribution of pests during rice cultivation is characterized by small scale and high density, making identification challenging. This article was based on deep learning and the classic YOLOv8s lightweight model was used to train and recognize 14 types of rice pests, including rice leaf roller, rice leaf caterpillar, and rice stem maggot, etc. The model training and verification results were obtained. The training results showed that the model has good convergence speed and stability; the verification results indicated that the model has good performance, with the recognition accuracy of 0.788, the recall rate of 0.721, and the recognition accuracy of 0.809, mAP@0.5 of 0.772 for 14 rice pests. Overall, the model had good performance and can meet the requirements of rice pest detection. The research results provide references for the identification of rice pest.

  • WUYue’e, DUANHaiyan, JIANGGonghao
    Chinese Agricultural Science Bulletin. 2025, 41(4): 19-24. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0158

    To understand the research progress of colored rice and its related genes, the functions of colored rice were summarized, and the effects of Ra, Rc, Rd, OsC1 and OsB2 genes on the traits of colored rice were analyzed. These genes determine the red, black, and purple colors of rice grains by influencing the accumulation of anthocyanins and proanthocyanidins. In this paper, we point out the limitations of related rice color genes in rice breeding. And the current research is not systematic enough to make full use of the diversity of these genes and prove the role of these genes in other rice traits. It is believed that genome-wide association analysis and population genetics method can be used to systematically analyze the variation and expression patterns of these genes in different rice varieties, and provide data support for rice genetic improvement. We can also use genetic methods and modern biotechnology methods to explore the functions of these genes in other traits of rice, to provide theoretical basis for the improvement of multiple traits of rice.

  • WANGChenlong, MINJie, LIANGRui, TANXiongyu, WANGShuo, UmutHasan
    Chinese Agricultural Science Bulletin. 2025, 41(4): 84-93. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0385

    The microbial composition and function in the rhizosphere is the research focus of microbial ecology. Analysis of the diversity of soil microbial communities in the root system of paddy rice and the effects of environmental factors on soil microorganisms can provide reference value for the sustainability of soils in the growing areas of paddy rice and the conservation of land resources. In this study, we used 16S rRNA high-throughput sequencing technology to determine the bacterial composition of soil microorganisms in the rhizosphere of paddy rice, and analyze the composition and diversity of microbial communities sampled from different regions, and explore the relationship between soil microbial diversity and soil physicochemical properties. The results showed that a total of 33862 OTUs, belonging to 38 phylums, 88 orders, 214 orders, 514 families and 2268 genera, were obtained from the paddy rice rhizosphere soil samples collected from the four regions by sequencing. At the phylum level, the dominant phyla of paddy rice rhizosphere soil bacteria collected from the four regions were Proteobacteria, Bacteroidetes and Firmicutes. At the genus level, Limisphaera was the dominant taxon of paddy rice rhizosphere soil bacteria. As shown by the Alpha diversity index, the species diversity and richness of paddy rice inter-root soil bacteria collected from the four regions were generally as followed: 68th Regiment of the Corps (D)> Dairy Farm of Yili Prefecture (A)> Chabchal Town (B)> Sundzach Niuzhu Township (C); the Beta diversity index indicated that the paddy rice rhizosphere soil collected from the four regions differed accordingly in their bacterial community compositions, with greater differences existed between group A and other groups. The correlation analysis between soil bacteria and environmental factors concluded that the main influencing factors on the composition of microbial bacterial communities in paddy rice rhizosphere soils might be nitrogen, total potassium, and organic carbon. This study clarified the rhizosphere soil conditions and rhizosphere soil bacterial community characteristics of paddy rice distributed in the Ili River Valley, and provided theoretical support for the study of soil ecosystems in the Ili River Valley.

  • Crop Science
    Xiawan Zhai, Wenbin Kai, Youming Huang, Jinyin Chen, Xiaochun Zeng
    Journal of Integrative Agriculture. 2025, 24(2): 441-452. https://doi.org/10.1016/j.jia.2023.11.004

    Rice is the world’s largest food crop, but it often encounters flowering asynchronization problems during hybrid rice seed production.  In addition, the slow closure of female florets leads to seed mildew and affects the quality.  The hormone abscisic acid (ABA) plays a crucial role in plant responses to abiotic stresses.  Previous studies showed that exogenous ABA promotes floret closure, although the molecular mechanisms and effects of endogenous ABA on floret closure remain unknown.  In this study, the effect of endogenous ABA on floret closure and the molecular mechanism by which ABA promotes floret closure through sugar transporters were investigated by changing the expression levels of OsNCED3 and OsPYL1 in rice.  The results showed that overexpression (OE)-OsNCED3 increased the endogenous ABA level of florets.  Florets closed 5.91 min earlier and OsNCED3 gene knockout line delayed the closure of florets by 5.08 min compared with the wild type.  In addition, OsPYL1 regulated the endogenous ABA content and changed the sensitivity to ABA such that the floret closure times for OE and CRISPR-Cas9 (CR) were 9.84 min earlier and 12.78 min later, respectively, resulting in an increase in the split husk rate to 15.4%.  The gene expression levels of some sugar transporters (STs) changed.  The OsPYL1 and OsSWEET4 proteins could interact on the cell membrane.  These results indicate that ABA promotes the closure of rice florets and the enhanced sensitivity to ABA promotes this effect even more.  The molecular mechanism is mainly related to downstream sugar transporters that respond to the ABA signaling pathway, especially OsSWEET4. 

  • Crop Science
    Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li
    Journal of Integrative Agriculture. 2025, 24(2): 480-496. https://doi.org/10.1016/j.jia.2023.12.014
    The responses of drip-irrigated rice physiological traits to water and fertilizers have been widely studied.  However, the responses of yield, root traits and their plasticity to the nitrogen environment in different nitrogen-efficient cultivars are not fully understood.  An experiment was conducted from 2020–2022 with a high nitrogen use efficiency (high-NUE) cultivar (T-43) and a low-NUE cultivar (LX-3), and four nitrogen levels (0, 150, 300, and 450 kg ha–1) under drip irrigation in large fields.  The aim was to study the relationships between root morphology, conformation, biomass, and endogenous hormone contents, yield and NUE.  The results showed three main points: 1) Under the same N application rate, compared with LX-3, the yield, N partial factor productivity (PFP), fine root length density (FRLD), shoot dry weight (SDW), root indole-3-acetic acid (IAA), and root zeatin and zeatin riboside (Z+ZR) of T-43 were significantly greater by 11.4–18.9, 11.3–13.5, 11.6–15.7, 9.9–31.1, 6.1–48.1, and 22.8–73.6%, respectively, while the root–shoot ratio (RSR) and root abscisic acid (ABA) were significantly lower (P<0.05); 2) nitrogen treatment significantly increased the rice root morphological indexes and endogenous hormone contents (P<0.05).  Compared to N0, the yield, RLD, surface area density (SAD), root volume density (RVD), and root endogenous hormones (IAA, Z+ZR) were significantly increased in both cultivars under N2 by 61.6–71.6, 64.2–74.0, 69.9–105.6, 6.67–9.91, 54.0–67.8, and 51.4–58.9%, respectively.  Compared with N3, the PFP and N agronomic efficiency (NAE) of nitrogen fertilizer under N2 increased by 52.3–62.4 and 39.2–63.0%, respectively; 3) the responses of root trait plasticity to the N environment significantly differed between the cultivars (P<0.05).  Compared with LX-3, T-43 showed a longer root length and larger specific surface area, which is a strategy for adapting to changes in the nutrient environment.  For the rice cultivar with high-NUE, the RSR was optimized by increasing the FRLD, root distribution in upper soil layers, and root endogenous hormones (IAA, Z+ZR) under suitable nitrogen conditions (N2).  An efficient nutrient acquisition strategy can occur through root plasticity, leading to greater yield and NUE.
  • LIXinghua, CAIXingxing, WANGHuan, ZHANGSheng, LIUXia, ZHOUQiang
    Chinese Agricultural Science Bulletin. 2025, 41(3): 1-8. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0112

    The aim was to explore the growth and development characteristics of ‘Si te’ late indica rice and provide theoretical support for its promotion and application. Many years field tests were conducted, with the typical ‘Si te’ late indica rice variety ‘Xiyou 447’ and the main rice variety ‘Jinyou 207’ in the middle and lower reaches of Yangtze River as experimental materials. Yield and growth characteristics were measured and breeding progress of ‘Si te’ late indica rice was summarized. Whole growth period of ‘Xiyou 447’ was 3-5 days shorter than that of ‘Jinyou 207’, and yield was increased by 7.5%-19.4%. Yield advantage of ‘Xiyou 447’ was mainly due to its synergistic improvement of dry matter accumulation and harvest index, as well as the higher total grain number per spike. The initial and terminal time of fast accumulation period of dry matter, nitrogen, phosphorus and potassium of ‘Xiyou 447’ were later than ‘Jinyou 207’, and mean accumulation speed was higher than ‘Jinyou 207’. Methane emission flux of ‘Xiyou 447’ was higher than ‘Jinyou 207’ at vegetative growth stage, but lower than ‘Jinyou 207’at heading and filling stage. In addition, ‘Xiyou 447’ had higher lodging resistance, which was mainly due to its lower plant height, shorter basal internode and higher stem wall thickness. ‘Si te’ late indica rice has short growth period, high yield, low methane emission and strong lodging resistance, so it has a good prospect for promotion and application.

  • XIANGWeiwei, WANGYusi, PENGJun, WANGJianwu, CHENHua
    Chinese Agricultural Science Bulletin. 2025, 41(3): 158-164. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0169

    This study aims to investigate the effects of Kocuria rosea SDB9 and Brevibacterium frigoritolerans SDB5 on the nutritional quality of rice. Using rice as the experimental material, the seeds were soaked with SDB9, SDB5, and a 1:1 mixture of both strains. The content of nine nutritional components in the rice grains was measured after harvest. The results were as follows. Compared to the control group (CK), the starch content in the experimental groups increased by only 1%, which was not statistically significant; crude protein content decreased by 3%-5%, also was not significant; crude fat content increased in all treatments, with a significant increase of 14.9% in the SDB9+5 treatment; soluble total sugar content decreased by 52.5%-58.3%, which was highly significant; reducing sugar content increased in all treatments except for a slight decrease of 0.6% in the SDB5 treatment, with a significant increase of 25.9% in the SDB9 treatment and an 8% increase in the SDB9+5 treatment, which was not significant; soluble protein content decreased in all treatments, with a significant decrease of 14.9% in the SDB9+5 treatment; cellulose content increased by 0.8%-0.9% in all treatments except for a slight decrease of 0.2% in the SDB9+5 treatment; vitamin C content decreased in all treatments, with a highly significant decrease of 64.5% in the SDB9 treatment and a significant decrease of 16.1% in the SDB5 treatment, while the SDB9+5 treatment showed a significant decrease of 35.5%; nitrate content decreased by 1%-12.8%, with no significant differences observed. In summary, treatment with SDB9 and SDB5 alone or in combination resulted in a slight increase in starch content and an approximate 8% decrease in crude protein content, improving rice palatability. The increase in crude fat and decrease in nitrate levels contributed positively to quality improvement. This indicates that Kocuria rosea SDB9 and Brevibacterium frigoritolerans SDB5 can improve the nutritional quality of rice to some extent. The evaluation of these two strains based on nutritional quality ranked them as follows: SDB9 > SDB9+5 > SDB5 > CK.

  • XUJianfeng, JINYuqing, CAIJianjun, YEZhengqian
    Anhui Agricultural Science Bulletin. 2025, 31(1): 28-32. https://doi.org/10.16377/j.cnki.issn1007-7731.2025.01.007

    To analyze the effects of organic substitution of partial fertilizers on soil properties and rice growth under different fertility levels, a experiment for rice to replace chemical fertilizers with 15% organic fertilizer with low, medium, and high fertility levels was conducted. Nutrients such as organic matter and alkaline nitrogen, as well as indicators such as 1 000-grain weight, tiller number, and plant height of rice were measured to analyze nutrient absorption and fertilizer input and output. The results showed that, in terms of soil nutrient, compared with conventional fertilization, 15% organic fertilizer substitution increased the effective phosphorus content by 24.22% in medium fertility plots, significantly increased the available potassium content by 27.71% in high fertility plots; yield aspect, 1 000-grain weight and yield of rice increased by 0.60, 0.51, and 0.94 g and 29, 143, and 55 kg/hm2, respectively, in plots with low, mediom and high fertility levels; nutrient utilization aspect, the total potassium content of rice straw increased by 78.08%, 28.85%, and 29.44% compared with conventional fertilization on plots with 3 fertility levels, respectively; economic benefits aspect, 15% organic fertilizer substitution saved fertilizer costs by 187.4 yuan/hm2, and the average output value increased by 196.7 yuan/hm2. In summary, the use of 15% organic fertilizer instead of chemical fertilizers could be beneficial for increasing soil nutrients and rice yield in low, medium, and high fertility plots. The research provides references for reducing fertilizer usage and promoting green rice production.

  • LIXinghua, ZHANGSheng, CAIXingxing, WANGHuan, LIUXia, CHENJie, CAOZhigang, ZHANGWenchao, ZHANGQun, TUJunming
    Chinese Agricultural Science Bulletin. 2025, 41(2): 1-6. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0361

    To explore and utilize the precious red rice germplasm resources in China, nutritional value and processing application of red rice were discussed, and relevant situation of 3 independent innovative germplasm (varieties) of red rice was introduced in combination with the germplasm innovation work of our team for many years, and the research direction of red rice was put forward. The results show that red rice contains the same basic nutrients as milled rice, and the types and contents of bioactive substances are higher than milled rice, which can be widely used in food and health products. After many years of independent innovation, our team selected and bred three lines of red rice sterile line ‘Gangte A’, with brown rice rate of 77.6%, head yield of 67.4%, chalkiness of 27.6%, amylose content of 12.4%. Yield of the three-line hybrid rice ‘Gangteyou 8024’ was 9581.6 kg/hm2, with brown rice rate of 78.7%, head yield of 60.3%, chalkiness of 7.8%, amylose content of 15.1%. Yield of the two-line hybrid rice ‘E liangyou 32’ was 7307.6 kg/hm2, with brown rice rate of 78.9%, head yield of 62.8%, chalkiness of 6.3%, amylose content of 13.3%. In view of the prominent problems of low sales volume and few kinds of red rice and its products in the Chinese market, four research directions of red rice were put forward, including strengthening the research and utilization of existing red rice germplasm resources, breeding new varieties of red rice with high yield and disease resistance, carrying out research on supporting cultivation technology and carrying out research on processing technology. Red rice is a kind of special rice resources with red seed coat due to pigmentation, which has both therapeutic and medicinal value, and has huge market potential. This paper can provide reference for the promotion and application of red rice in production.

  • ZHANGZhicong, CUIDong, GUOJinfeng, UMUTHasan, LILiang
    Chinese Agricultural Science Bulletin. 2025, 41(2): 109-116. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0387

    The study aims to improve the automatic recognition of rice pest and disease images and better guide agricultural pest and disease control. Using a combination of transfer learning and ResNet-18 model, we organized open source plant disease data on the internet, and obtained images of 9 rice pests and diseases, including bacterial blight, blast and Tungro, as well as a healthy leaf as the research objects. 11414 cleaned images were selected to establish a dataset for model training, and the 30% dataset was split as the test set. On the basis of six pre trained models such as ResNet-18, GoogLeNet, VGG-16, and MobileNet-v2, a series of parameter adjustments were made to the transfer model. The results show that: (1) under the consistent training parameters, the proposed model ResNet-18 has significantly higher validation accuracy and lowest loss value compared with MobileNet-v2, AxeNet, VGG-16, GoogLeNet, SqueezeNet, and the original ResNet-18 model. The final accuracy of the model is 96.97%. (2) Compared with the original model, the training accuracy of all transferred learning models has been improved significantly, with the improved accuracy ranging from 5.03% to 13.90%. The optimized training model has the characteristics of fast recognition speed and improved accuracy, which can accurately and quickly identify the type of crop disease, providing support for the automatic diagnosis of crop diseases.

Mobile