Acta Agric Zhejiangensis.
2024, 36(04):
952-967.
针对现有方法在高密度锦鲤鱼苗目标检测任务中适用性差的问题,提出一种基于非局部操作的YOLOv5s(MS-Non-local BIFPN coordinate attention YOLOv5s, NBC-YOLOv5s)目标检测算法。首先,在YOLOv5s的主干网络中,添加多尺度非局部操作算子(multi scale non-local, MS-Non-local),增强模型对高密度锦鲤鱼苗的特征提取能力;其次,在颈部网络使用双向加权特征金字塔结构(bi-directional feature pyramid network, BIFPN)提升模型特征融合效率;最后,在网络的特征融合处,引入坐标注意力机制(coordinate attention, CA),增加模型对图片关键信息的关注度。为验证本文算法的有效性,结合真实渔场环境建立锦鲤鱼苗数据集。实验结果表明,NBC-YOLOv5s的精确率、召回率、平均精度均值(mAP)分别为88.5%、89.7%、93.7%,与YOLOv5s相比,改进后网络较原模型分别提升0.6、9.0、4.4百分点。为验证MS-Non-local对YOLOv5s的性能提升效果,本文对比了卷积注意力(convolutional block attention module, CBAM)、通道注意力(squeeze and excitation, SE)、双层路由注意力(bi-level routing attention, BRA)3种机制。结果表明,MS-Non-local的mAP相较于CBAM、SE、BRA分别提升了2.6、2.1、0.9百分点。并且通过模型拆解,分析了本文方法对不同密度锦鲤鱼苗图像的检测有效性,结果显示,该算法可实现真实场景下对高密度锦鲤鱼苗的检测,能够为筛选高品质锦鲤提供有效技术支撑。