陆地棉-异常棉异附加系抗旱耐盐性评价及关键生理生化指标测定

上官艺馨,曹静,季为,陈祥龙,徐鹏,郭琪,沈新莲,徐珍珍

棉花学报. 2022, 34(5): 369-382

PDF(17799 KB)
PDF(17799 KB)
棉花学报 ›› 2022, Vol. 34 ›› Issue (5) : 369-382. DOI: 10.11963/cs20220045
研究与进展

陆地棉-异常棉异附加系抗旱耐盐性评价及关键生理生化指标测定

作者信息 +

Evaluation of drought and salt resistance and measurement of key physiological and biochemical indexes for a set of monosomic alien addition lines derived from Gossypium anomalum in G. hirsutum background

Author information +
History +

摘要

【目的】筛选具有抗旱或耐盐潜力的陆地棉-异常棉异附加系,并明确体现其抗旱耐盐性的关键生理生化指标,旨在为棉花抗旱耐盐育种提供理论与材料基础。【方法】利用异常棉每条染色体特异的简单重复序列(simple sequence repeat, SSR)标记鉴定陆地棉-异常棉异附加系的基因型;通过表型观察和相关指标测定,筛选出具有抗旱或耐盐潜力的异附加系,并测定其生理生化指标,包括过氧化氢(H2O2)、丙二醛(malondialdehyde, MDA)、脯氨酸(proline, PRO)的含量、SPAD(soil and plant analyzer development)值及过氧化物酶(peroxidase, POD)、过氧化氢酶(catalase, CAT)和超氧化物歧化酶(superoxide dismutase, SOD)的活性。【结果】陆地棉-异常棉异附加系的传递率为34.66%~51.50%;MAAL_1B、MAAL_5B、MAAL_7B、MAAL_8B、MAAL_11B和MAAL_12B具有抗旱潜力,MAAL_4B、MAAL_6B、MAAL_8B、MAAL_9B和MAAL_10B具有耐盐潜力。干旱或盐胁迫下轮回亲本陆地棉苏棉8289和具有抗旱或耐盐潜力的异附加系叶片中的MDA、H2O2和PRO的含量与干旱前或清水对照相比均有不同程度地增加,且轮回亲本的MDA和H2O2含量更高。干旱处理后10 d,与轮回亲本相比,MAAL_1B中CAT和SOD的活性、MAAL_5B中CAT和SOD的活性及PRO含量、MAAL_7B中SOD的活性、MAAL_8B中POD、CAT和SOD的活性及SPAD值、MAAL_11B中POD和CAT的活性以及MAAL_12B中CAT活性及SPAD值显著或极显著提高;350 mmol·L-1 NaCl处理后3 d,与轮回亲本相比,MAAL_6B中POD和SOD的活性及SPAD值、MAAL_8B中CAT活性、MAAL_9B中POD和SOD的活性以及MAAL_10B中SOD活性和SPAD值均显著或极显著提高。【结论】部分陆地棉-异常棉异附加系具有抗旱或耐盐潜力,且可能通过不同的生理生化过程应答干旱或高盐胁迫。

Abstract

[Objective] Screening the drought- or salt-resistant lines and measurement of key physiological and biochemical indexes for a set of monosomic alien addition lines (MAALs) derived from Gossypium anomalum in G. hirsutum background would provide the theory and material basis for drought and salt resistance breeding in cotton. [Method] The genotypes of all the MAALs were confirmed by chromosome-specific simple sequence repeat (SSR) markers of G. anomalum. The MAALs with drought or salt resistance potential was screened based on the phenotypic observation and related indexes measurement, and physiological and biochemical indexes were determined, including the content of hydrogen peroxide(H2O2), malondialdehyde (MDA), proline(PRO) and chlorophyll(SPAD value) and the activity of peroxidase(POD), catalase(CAT) and superoxide dismutase(SOD). [Result] The transmission rate of MAALs ranged from 34.66% to 51.50%. MAAL_1B, MAAL_5B, MAAL_7B, MAAL_8B, MAAL_11B, and MAAL_12B had drought resistance potential, while MAAL_4B, MAAL_6B, MAAL_8B, MAAL_9B, and MAAL_10B showed salt resistance potential. Under drought or salt stress, the content of MDA, H2O2 and PRO of all the tested plants increased compared with the control conditions, and the content of MDA and H2O2 of the recurrent parent G. hirsutum Su8289 was higher than that of MAALs with drought or salt resistance potential. The CAT and SOD activity in MAAL_1B, the CAT, SOD activity and PRO content in MAAL_5B, the SOD activity in MAAL_7B, the POD, CAT, SOD activity and SPAD value in MAAL_8B, the POD and CAT activity in MAAL_11B, and the CAT activity and SPAD value in MAAL_12B were significantly or extremely significantly higher than that in Su8289 at 10 days after drought treatment. Three days after 350 mmol·L-1 NaCl treatment, the POD, SOD activity and SPAD value in MAAL_6B, the CAT activity in MAAL_8B, the POD and SOD activity in MAAL_9B, and the SOD activity and SPAD value in MAAL_10B were significantly or extremely significantly higher than that in Su8289. [Conclusion] Some MAALs had drought or salt resistance potential, and may respond to drought or salt stress through different physiological and biochemical process.

关键词

陆地棉 / 异常棉 / 异附加系 / 抗旱性 / 耐盐性 / 生理生化指标

Key words

G. hirsutum / G. anomalum / monosomic alien addition line / drought resistance / salt resistance / physiological and biochemical indexes

引用本文

导出引用
上官艺馨 , 曹静 , 季为 , 陈祥龙 , 徐鹏 , 郭琪 , 沈新莲 , 徐珍珍. 陆地棉-异常棉异附加系抗旱耐盐性评价及关键生理生化指标测定. 棉花学报. 2022, 34(5): 369-382 https://doi.org/10.11963/cs20220045
Yixin Shangguan , Jing Cao , Wei Ji , Xianglong Chen , Peng Xu , Qi Guo , Xinlian Shen , Zhenzhen Xu. Evaluation of drought and salt resistance and measurement of key physiological and biochemical indexes for a set of monosomic alien addition lines derived from Gossypium anomalum in G. hirsutum background. Cotton Science. 2022, 34(5): 369-382 https://doi.org/10.11963/cs20220045

参考文献

[1]
钱静斐, 宋玉兰, 原瑞玲, 等. 开放条件下我国棉花产业安全问题及发展策略[J/OL]. 中国农业资源与区划, 2020, 41(5): 140-145[2022-08-25]. https://doi:10.7621/cjarrp.1005-9121.20200517.
Qian Jingfei, Song Yulan, Yuan Ruiling, et al. China's cotton industry safety issues and development strategies under open conditions[J/OL]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(5): 140-145[2022-08-25]. https://doi:10.7621/cjarrp.1005-9121.20200517.
[2]
国家统计局. 国家统计局关于2021年棉花产量的公告[EB/OL]. (2021-12-14)[2022-10-08]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202112/t20211214_1825249.html
National Bureau of Statistics. National Bureau of Statistics on 2021 cotton production announcement[EB/OL]. (2021-12-14)[2022-10-08]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202112/t20211214_182524
[3]
马富裕, 李蒙春, 杨建荣, 等. 花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J/OL]. 中国农业科学, 2002, 35(12): 1467-1472[2022-08-25]. https://doi.org/10.3321/j.issn:0578-1752.2002.12.006.
Ma Fuyu, Li Mengchun, Yang Jianrong, et al. A study of effect of water deficit of three period during cotton anthesis on canopy apparent photosynthesis and WUE[J/OL]. Scientia Agricultura Sinica, 2002, 35(12): 1467-1472[2022-08-25]. https://doi.org/10.3321/j.issn:0578-1752.2002.12.006.
[4]
胡明芳, 田长彦, 赵振勇, 等. 新疆盐碱地成因及改良措施研究进展[J/OL]. 西北农林科技大学学报 (自然科学版), 2012, 40(10): 111-117[2022-08-25]. https://doi.org/10.13207/j.cnki.jnwafu.2012.10.017.
Hu Mingfang, Tian Changyan, Zhao Zhenyong, et al. Salinization causes and research progress of technologies improving saline-alkali soil in Xinjiang[J/OL]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(10): 111-117[2022-08-25]. https://doi.org/10.13207/j.cnki.jnwafu.2012.10.017.
[5]
刘国强, 鲁黎明, 刘金定. 棉花品种资源耐盐性鉴定研究[J/OL]. 作物品种资源, 1993(2): 21-22[2022-08-25]. https://doi.org/10.19462/j.cnki.1671-895x.1993.02.012.
Liu Guoqiang, Lu Liming, Liu Jinding. Study on salt tolerance identification of cotton variety resources[J/OL]. Crop Variety Resources, 1993(2): 21-22[2022-08-25]. https://doi.org/10.19462/j.cnki.1671-895x.1993.02.012.
[6]
Ashraf M, Ahmad S. Exploitation of intra-specific genetic variation for improvement of salt(NaCl) tolerance in upland cotton (Gossypium hirsutum L.)[J/OL]. Hereditas, 1999, 131(3): 253-256[2022-08-25]. https://doi.org/10.1111/j.1601-5223.1999.00253.x.
[7]
杨淑萍, 危常州, 梁永超. 新疆主要棉花品种耐盐性筛选与鉴定[J/OL]. 干旱区研究, 2013, 30(6): 1129-1135[2022-08-25]. https://doi.org/10.13866/j.azr.2013.06.015.
Yang Shuping, Wei Changzhou, Liang Yongchao. Identification and screening of salt tolerance of main cotton varieties in Xinjiang[J/OL]. Arid Zone Research, 2013, 30(6): 1129-1135[2022-08-25]. https://doi.org/10.13866/j.azr.2013.06.015.
[8]
王宁, 冯克云, 南宏宇, 等. 甘肃河西走廊棉区棉花萌发期和苗期耐盐性鉴定与评价[J/OL]. 干旱地区农业研究, 2018, 36(1): 148-155[2022-08-25]. https://doi:10.7606/j.issn.1000-7601.2018.01.23.
Wang Ning, Feng Keyun, Nan Hongyu, et al. Salt tolerance identification and evaluation of cotton at its germination and seedling stages in Hexi area of Gansu[J/OL]. Agricultural Research in the Arid Areas, 2018, 36(1): 148-155[2022-08-25]. https://doi:10.7606/j.issn.1000-7601.2018.01.23.
[9]
Wendel J F, Brubaker C L, Seelanan T, et al. Physiology of cotton[M/OL]. Dordrecht: Springer, 2010: 1-18[2022-08-25]. https://doi.org/10.1007/978-90-481-3195-2_1.
[10]
Ray L L, Wendt C W, Roark B, et al. Genetic modification of cotton plant for more efficient water use[M/OL]// Stone J F. Developments in Agricultural and Managed Forest Ecology [S.l.] : Elsevier, 1975(1): 31-38[2022-08-25]. https://doi.org/10.1016/B978-0-444-41273-7.50009-X.
[11]
Stephens S G. Salt water tolerance of seeds of Gossypium species as a possible factor in seed dispersal[J/OL]. The American Naturalist, 1958, 92(863): 83-92[2022-08-25]. https://doi.org/10.1086/282014.
[12]
Fryxell P A. A revised taxonomic interpretation of Gossypium L. (Malvaceae)[J]. Rheedea, 1992, 2(2): 108-165.
[13]
Zhang X, Zhai C J, He L C, et al. Morphological, cytological and molecular analyses of a synthetic hexaploid derived from an interspecific hybrid between Gossypium hirsutum and Gossypium anomalum[J/OL]. The Crop Journal, 2014, 2(5): 272-277[2022-08-25]. https://doi.org/10.1016/j.cj.2014.06.009.
[14]
Zhai C J, Xu P, Zhang X, et al. Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes[J/OL]. Theoretical and Applied Genetics, 2015, 128(8): 1531-1540[2022-08-25]. https://doi.org/10.1007/s00122-015-2528-7.
[15]
Meng S, Xu Z Z, Xu P, et al. A complete set of monosomic alien addition lines developed from Gossypium anomalum in a Gossypium hirsutum background: genotypic and phenotypic characterization[J/OL]. Breeding Science, 2020, 70(4): 494-501[2022-08-25]. https://doi.org/10.1270/jsbbs.19146.
[16]
Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J/OL]. Plant Molecular Biology Reporter, 1993, 11(2): 122-127[2022-08-25]. https://doi.org/10.1007/BF02670470.
[17]
Xu Z Z, Chen J D, Meng S, et al. Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding[J/OL]. Plant Communications, 2022, 3(5): 100350[2022-08-25]. https://doi.org/10.1016/j.xplc.2022.100350.
[18]
张军, 武耀廷, 郭旺珍, 等. 棉花微卫星标记的PAGE/银染快速检测[J]. 棉花学报, 2000, 12(5): 267-269, 282.
Zhang Jun, Wu Yaoting, Guo Wangzhen, et al. Fast screening of microsatellite markers in cotton with PAGE/silver staining[J]. Cotton Science, 2000, 12(5): 267-269, 282.
[19]
Rodriguez-Uribe L, Higbie S M, Stewart J M, et al. Identifi cation of salt responsive genes using comparative microarray analysis in upland cotton (Gossypium hirsutum L.)[J/OL]. Plant Science, 2011, 180(3): 461-469[2022-08-25]. https://doi.org/10.1016/j.plantsci.2010.10.009.
[20]
Yao D X, Zhang X Y, Zhao X H, et al. Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.)[J/OL]. Genomics, 2011, 98(1): 47-55[2022-08-25]. https://doi.org/10.1016/j.ygeno.2011.04.007.
[21]
Zhang L, Zhang G W, Wang Y H, et al. Effect of soil salinity on physiological characteristics of functional leaves of cotton plants[J/OL]. Journal of Plant Research, 2013, 126(2): 293-304[2022-08-25]. https://doi.org/10.1007/s10265-012-0533-3.
[22]
Gong W F, Xu F F, Sun J L, et al. iTRAQ-based comparative proteomic analysis of seedling leaves of two upland cotton genotypes differing in salt tolerance[J/OL]. Frontiers in Plant Science, 2017, 8: 2113[ 2022-08-25]. https://doi.org/10.3389/ fpls.2017.02113.
[23]
Han J M, Lei Z Y, Zhang Y J, et al. Drought-introduced variability of mesophyll conductance in Gossypium and its relationship with leaf anatomy[J/OL]. Physiologia Plantarum, 2019, 166(3): 873-887[2022-08-25]. https://doi.org/10.1111/ppl.12845.
[24]
Sun F L, Chen Q, Chen Q J, et al. Screening of key drought tolerance indices for cotton at the flowering and boll setting stage using the dimension reduction method[J/OL]. Frontiers in Plant Science, 2021, 12: 619926[2022-08-25]. https://doi.org/10.3389/fpls.2021.619926.
[25]
Dong Y T, Hu G J, Yu J W, et al. Salt-tolerance diversity in diploid and polyploid cotton (Gossypium) species[J/OL]. The Plant Journal, 2020, 101(5): 1135-1151[2022-08-25]. https://doi.org/10.1111/tpj.14580.
[26]
Wang B, Nie Y C, Lin Z X, et al. Molecular diversity genomic constitution, and QTL mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum × G. darwinii Watt[J/OL]. Theoretical and Applied Genetics, 2012, 125(6): 1263-1274[2022-08-25]. https://doi.org/10.1007/s00122-012-1911-x.
[27]
Wang B H, Draye X, Zhuang Z M, et al. QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and G. mustelinum[J/OL]. Theoretical and Applied Genetics, 2017, 130(6): 1297-1308[2022-08-25]. https://doi.org/10.1007/s00122-017-2889-1.
[28]
Keerio A A, Shen C, Nie Y C, et al. QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum × G. tomentosum[J/OL]. International Journal of Molecular Sciences, 2018, 19(1): 243[2022-08-25]. https://doi.org/10.3390/ijms19010243.
[29]
Meyer V G. Male sterility from Gossypium harknessii[J/OL]. Journal of Heredity, 1975, 66(1): 23-27[2022-08-25]. https://doi.org/10.1093/oxfordjournals.jhered.a108566.
[30]
Culp T W, Harrell D C, Kerr T. Some genetic implications in the transfer of high fiber strength genes to upland cotton[J/OL]. Crop Science, 1979, 19(4): 481-484[2022-08-25]. https://doi.org/10.2135/cropsci1979.0011183X001900040013x.
[31]
钱思颖, 黄骏麒, 彭跃进, 等. 陆地棉 (G. hirsutum L.) 异常棉 (G. anomalum Wawr. & Peyr.) 种间杂种的研究及其在育种上的应用[J]. 中国农业科学, 1992, 25(6): 44-51.
Qian Siying, Huang Junqi, Peng Yuejin, et al. Studies on the hybrid of Gossypium hirsutum L. and G. anomalum Wawr. & Peyr. and application in breeding[J]. Scientia Agricultura Sinica, 1992, 25(6): 44-51.
[32]
周宝良, 沈新莲, 陈松, 等. 利用三个野生棉种进行陆地棉纤维品质改良的效应比较[J]. 棉花学报, 2003, 15(1): 22-25.
Zhou Baoliang, Shen Xinlian, Chen Song, et al. Study on effect of three wild species for improving fiber quality in upland cotton (Gossypium hirsutum L.)[J]. Cotton Science, 2003, 15(1): 22-25.
[33]
Benbouza H, Lacape J M, Jacquemin J M, et al. Introgression of the low-gossypol seed & high-gossypol plant trait in upland cotton: analysis of [(Gossypium hirsutum × G. raimondii) × G. sturtianum] trispecific hybrid and selected derivatives using mapped SSRs[J/OL]. Molecular Breeding, 2010, 25(2): 273-286[2022-08-25]. https://doi.org/10.1007/s11032-009-9331-6.
[34]
Romano G B, Sacks E J, Stetina S R, et al. Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Renari) introgressed from Gossypium aridum into upland cotton (G. hirsutum)[J/OL]. Theoretical and Applied Genetics, 2009, 120(1): 139-150[2022-08-25]. https://doi.org/10.1007/s00122-009-1165-4.
[35]
Bell A A, Forest Robinson A, Quintana J, et al. Registration of LONREN-1 and LONREN-2 germplasm lines of upland cotton resistant to reniform nematode[J/OL]. Journal of Plant Registrations, 2014, 8(2): 187-190[2022-08-25]. https://doi.org/10.3198/jpr2013.11.0069crg.
[36]
Attipalli R R, Kolluru V C, Munusamy V. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plant[J/OL]. Journal of Plant Physiology, 2004, 161(11): 1189-1202[2022-08-25]. https://doi.org/10.1016/j.jplph.2004.01.013
[37]
Munné-Bosch S, Peñuelas J. Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions[J/OL]. Plant Science, 2004, 166(4): 1105-1110[2022-08-25]. https://doi.org/10.1016/j.plantsci.2003.12.034.
[38]
吴永美, 吕炯章, 王书建, 等. 植物抗旱生理生态特性研究进展[J]. 杂粮作物, 2008(2): 90-93.
Wu Yongmei, Jiongzhang, Wang Shujian, et al. Research progress on eco-physiological responses of plant to drought conditions[J]. Rain Fed Crops, 2008(2): 90-93.
[39]
Roldán A, Díaz-Vivancos P, Hernández J A, et al. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil[J/OL]. Journal of Plant Physiology, 2008, 165(7): 715-722[2022-08-25]. https://doi.org/10.1016/j.jplph.2007.02.007.
[40]
Reddy A R, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J/OL]. Journal of Plant Physiology, 2004, 161(11): 1189-1202[2022-08-25]. https://doi.org/10.1016/j.jplph.2004.01.013.
[41]
赵可夫, 李军. 盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响[J]. 植物学报, 1999, 41(12): 1287-1292.
Zhao Kefu, Li Jun. Effects of salinity on the contents of osmotica of monocotyledenous halophytes and their contribution to osmotic adjustment[J]. Acta Botanica Sinica, 1999, 41(12): 1287-1292.
[42]
杨升, 张华新, 张丽. 植物耐盐生理生化指标及耐盐植物筛选综述[J]. 西北林学院学报, 2010, 25(3): 59-65.
Yang Sheng, Zhang Huaxin, Zhang Li. Physiological and biochemical indices of salt tolerance and scanning of salt-tolerance plants: a review[J]. Journal of Northwest Forestry University, 2010, 25(3): 59-65.
[43]
Muzammil S, Shrestha A, Dadshani S, et al. An ancestral allele of pyrroline-5-carboxylate synthase1 promotes proline accumulation and drought adaptation in cultivated barley[J/OL]. Plant Physiology, 2018, 178(2): 771-782[2022-08-25]. https://doi.org/10.1104/pp.18.00169.
[44]
李少昆, 肖璐, 黄文华, 等. 不同时期干旱胁迫对棉花生长和产量的影响 Ⅱ. 棉花生长发育及生理特性的变化[J/OL]. 石河子大学学报(自然科学版), 1999, 3(4): 261-264[2022-08-25]. https://doi.org/10.13880/j.cnki.65-1174/n.1999.04.001.
Li Shaokun, Xiao Lu, Huang Wenhua, et al. Effect of drought stress on cotton growth and lint yield at different growing stage II. The change of cotton growth and physiological characteristics to water stress[J/OL]. Journal of Shihezi University (Natural Science), 1999, 3(4): 259-264[2022-08-25]. https://doi.org/10.13880/j.cnki.65-1174/n.1999.04.001.

基金

江苏省重点研发计划(BE2022364)
国家自然科学基金(32100494)
PDF(17799 KB)

文章所在专题

棉花

208

Accesses

0

Citation

Detail

段落导航
相关文章

/