During the long process of evolution, plants have adapted to their environments through the biosynthesis of secondary metabolites (SM) using the acetate-malonate pathway, mevalonic acids pathway, or shikimic acid pathway, leading to resistance to different pests. As a major cash crop, cotton can produce many secondary metabolites with insecticidal activity, and show self-defense mechanisms under biotic stress conditions. These characteristics of cotton ensure reduced pest incidence and maintenance of ecological balance. This paper discusses the types of SMs, their synthesis, and insect resistance of cotton secondary metabolites in relation to their defense function. We propose possible pest-control strategies using secondary metabolites in cotton.
WANG Qi, DONG He-Zhong.
Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China. Cotton Science. 2013, 25(6): 557-563 https://doi.org/10.11963/cs130612
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] THEIS N, Lerdau M. The evolution of function in plant secondary metabolites[J]. International Journal of Plant Science, 2003(164):93-102.
[2] SUMARIRA A, Rashida P, Sobia C, et al. Role of secondarymetabolites biosynthesis in resistance to cotton leaf curl virus (CLCuV) disease[J]. African Journal of Biotechnology, 2011, 10 (79):18137-18141.
[3] JACK R M, James M S. Cotton physiology[M]. Memphis, Tennessee, USA: The Cotton Foundation Publisher, 1986: 597-621.
[4] 孔垂华. 21世纪植物化学生态学前沿领域[J]. 应用生态学报, 2002, 13(3): 349-353.
KONG Chui-hua. Frontier fields of plant chemical ecology in the 21st century[J]. Chinese Journal of Applied Ecology, 2002, 13(3): 349- 353.
[5] LUO Zhen, Dong He-zhong, Kong Xiang-qiang, et al. Individual and combined effects of salinity and waterlogging on Cry1Ac expression and insecticidal efficacy of Bt cotton[J]. Crop Protection, 2008, 27(12): 1485-1490.
[6] 徐正浩, 崔绍荣,何 勇,等. 植物次生代谢物质和害虫防治[J]. 植物保护, 2004,30(4):8-11.
XU Zheng-hao, Cui Shao-rong, He Yong, et al. Plant secondary metabolites and their effects on insect management[J]. Plant protection, 2004, 30(4):8-11.
[7] 陈巨莲, 倪汉祥, 孙京瑞.主要次生物质对麦蚜的抗性阈值及交互作用[J]. 植物保护学报, 2002, 29( l ): 7-12.
CHEN Ju-lian, Ni Han-xiang, Sun Jing-rui. The resistance threshold and interactions of several secondary metabolites to wheat aphids[J]. Acta Phytophylacica Sinica, 2002, 29(1): 7-12.
[8] 张永军, 郭予元. 棉花缩合单宁和杀虫蛋白的交互关系[J]. 棉花学报, 2000, 12(6):294-297.
ZHANG Yong-jun, Guo Yu-yuan. Interaction between condensed tannin and Bt crystal protein in cotton[J]. Cotton Science, 2000, 12(6): 294-297.
[9] 张永军,王武刚,郭予元. 转Bt基因棉花抗虫萜烯类化合物时空动态的HPLC分析[J]. 应用与环境生物学报, 2001, 7(1): 37-40.
ZHANG Yong-jun, Wang Wu-gang, Guo Yu-yuan. Analysis of terpenoids and their spatio-temporal expression of cotton in Bt transgenic cotton by HPLC method[J]. Journal of Applied and Environment Biology, 2001, 7(1): 37-40.
[10] 汤德良. 植物抗虫的次生代谢物质[J]. 世界农业,1999, 3(239): 32-33.
TANG De-liang. The secondary metabolism of plant insect resistant[J]. World Agicultrue, 1999, 3(239): 32-33.
[11] 武予清, 郭予元, 杨 舰. 棉株中抗虫物质黄酮类化合物的高效液相色谱分析[J]. 植物保护, 2000, 26(5):1-3.
WU Yu-qing, Guo Yu-yuan, Yang Jian. Analysis of flavonoid subtsance in cotton plants for resistance to pests by HPLC[J]. Plant Protection, 2000, 26(5):1-3.
[12] 武予清, 郭予元. 棉花单宁-黄酮类化合物对棉铃虫的抗性潜力[J]. 生态学 报, 2001, 21(2):286-289.
WU Yu-qing, Guo Yu-yuan. Potential resistance of tannins- flavoniods in upland cotton against Helicoverpa armigera (Hübner)[J]. Acta Ecologica Sinica, 2001, 21(2):286-289.
[13] HEDIN P A, Parrott W L, Jenkins J N. Relationship of glands, cotton square terpenoid aldehydes, and other allelochemicals to larval growth of Heliothis virescens (Lepidoptera, Noctuidae) [J]. Journal of Economic Entomology, 1992, 85(6): 359–364.
[14] HEDIN P A, Jenkins J N, Parrot W L. Evaluation of flavonoids in Gossypium arboreum (L.) cotton as potential source of resistance to tobacco budworm[J]. Journal of Chemical Ecology, 1992, 18(2): 105-114.
[15] 王琛柱. 棉酚和单宁酸对棉铃虫幼虫生长和消化生理的影响[J]. 植物保护学报, 1997,24(1): 13-18.
WANG Chen-zhu. Effects of gossypol and tannic acid on the growth and digestion physiology of cotton bollworm larvae[J]. Acta Phytophylacica Sinica, 1997, 24(1):13-18.
[16] CELORIO-MANCERA M P, Seung-Joon A, Heiko V, et al. Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera[J]. BMC Genomics, 2011,12: 575-591.
[17] MAO Ying-bo, Cai Wen-jun, Wang Jia-wei, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nature Biotechnology, 2007, 25(11): 1307-1313.
[18] 刘旭明, 杨奇华. 棉花抗蚜的生理生化机制及其与棉蚜种群数量消长关系的研究[J]. 植物保护学报, 1993, 20(1): 25-29.
LIU Xu-ming, Yang Qi-hua. The relationship between the physiological and biochemical mechanisms of aphid resistance of cotton and the population dynamics of cotton aphid[J]. Acta Phytophylacica Sinica, 1993, 20(1): 25-29.
[19] 孟 玲, 李保平, 王文全, 等. 新疆棉花栽培品种对棉蚜抗性及其机制的研究[J]. 中国棉花, 1999, 26(2): 8-10.
MENG Ling, Li Bao-ping, Wang Wen-quan, et al. The research of Xinjiang cotton cultivars to cotton aphid resistance and mechanism[J]. China Cotton, 1999, 26(2): 8-10.
[20] 武予清, 刘芹轩. 棉花叶片营养价值差异与抗螨性[J]. 棉花学报,1995, 7(2):109-112.
WU Yu-qing, Liu Qin-xuan. Within-Leaf Differences in Nutritive Value and Resistance in Cotton to Teranychus cinnaberinus[J]. Cotton Science, 1995, 7(2): 109-112.
[21] GAO Feng, Zhu San-rong, Sun Yu-cheng, et al. Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii and Propylaea japonica [J]. Environ Entomol, 2008, 37(1): 29-37.
[22] 雒珺瑜,崔金杰,王春义,等. 棉花叶片中棉酚和单宁含量与绿盲蝽抗性的关系[J]. 棉花学报, 2012, 24(3):279-283.
LUO Jun-yu, Cui Jin-jie, Wang Chun-yi, et al. Relationship between contents of gossypol acetic acid(GAA)and tannin in cotton leaf and resistance to Apolygus lucorum Meyer-Dür[J]. Cotton Science, 2012, 24(3):279-283.
[23] GUO Jian-ying, Wu Gang, Wan Fang-hao. Effects of high-gossypol cotton on the development and reproduction of Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1 cryptic species [J]. Journal of Economic Entomology, 2013, 106(3): 1379-1385.
[24] 林凤敏,吴 敌,陆宴辉,等. 棉花主要抗虫次生物质与其对绿盲蝽抗性的关系[J] . 植物保护学报, 2011, 38(3): 202-208.
LIN Feng-min, Wu Di, Lu Yan-hui, et al. The relationship between the main secondary metabolites and the resistance of cotton to Apolygus lucorum[J]. Acta Phytophylacica Sinica, 2011, 38(3): 202-208.
[25] ROBERT G O, Graham H, Mary M. Determining larval host plant use by a polyphagous lepidopteran through snalysis of sdult moths for plant secondary metabolites[J]. Journal of Chemical Ecology, 2007(33): 1131-1148.
[26] TAIZ L, Zeiger E. Plant physiology[M]. 5th ed. Sunderland, Massachusetts: Sinauer Associates Inc Publishers, 2006.
[27] ROHMER M. The discovery of a mevalonate independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants[J]. Nature Product Reports, 1999,16(5):565-574.
[28] GARDNER R G, Hampton R Y. A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes[J]. Journal Biology Chemical, 1999, 274(44): 31671-31678.
[29] ROHMER M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate[J]. Biochemical Journal, 1993, 295(2): 517-524.
[30] 段传人,王伯初,徐世荣. 环境应力对植物次生代谢产物形成的作用[J]. 重庆大学学报:自然科学版, 2003, 10(10): 67-72.
DUAN Chuan-ren, Wang Bo-chu, Xu Shi-rong. The effects of the environment stress on the plant secondary metabolite[J]. Journal of Chongqing University: Nature Science Edition, 2003, 10(10): 67- 72.
[31] DEMAIN A L, Fang A. The natural functions of secondary metabolites[J]. Adv Biochem Eng Biotechnol, 2000, 69: 1-39.
[32] CASTELLANOS I, Espinose-Garcia F J. Plant secondary metabolite diversity as a resistance trait against insects: a test with Sitophilus granararius (Coleopteran: Curculionidae) and secondary metabolites[J]. Biochemical Systematics and Ecology, 1997, 7(25): 591-602.
[33] MICHEAL W. Evolution of secondary metabolites from an ecological and molecular phylogenetic perstive[J]. Phytochemistry, 2003, 64(1): 3-19.
[34] BUCHANAN B B, Gruissem W, Jones R. Biochemistry and molecular biology of plants[M]. Maryland: Am Soc Plant Physiol, Rockville, MD, 2000: 610-628.
[35] LIU Zhi-jun. Drought-induced in vivo synthesis of camptothecin in Camptotheca acuminata seedlings[J]. Physiologia Plantarum, 2000, 110(4): 483- 488.
[36] 马 惠, 赵 鸣, 夏晓明, 等. Bt棉对棉叶螨发生的影响及与次生代谢物质的关系[J] . 棉花学报, 2012, 24(6): 481-488.
MA Hui, Zhao Ming, Xia Xiao-ming, et al. Effects of Bt transgenic cotton on occurrence of cotton spider mites in relation to the secondary metabolites in cotton[J]. Cotton Science, 2012, 24(6): 481-488.
[37] 杨长琴, 徐立华, 杨德银. 氮肥对抗虫棉蛋白表达的影响及其氮代谢机理的研究[J].棉花学报, 2005, 17(4):227-231.
YANG Chang-qin, Xu Li-hua, Yang De-yin. Effects of nitrogen fertilizer on the Bt-protein content in transgenic cotton and nitrogen metabolism mechanism[J]. Cotton Science, 2005, 17(4):227-231.
[38] 阎凤鸣,许崇任,Bengtsson M, et al. 转Bt基因棉挥发性气味的化学成分及其对棉铃虫的电生理活性[J].昆虫学报,2002,45(4):425-429.
YAN Feng-ming, Xu Chong-ren, Bengtsson M, et al. Volatile compositions of transgenic Bt cotton and their electrophysiological effects on the cotton bollworm[J]. Acta Entomologica Sinica, 2002,45(4):425-429.
[39] 陆宴辉,李 永,陈学新,等. 转基因棉棉株体内主要营养物质和次生物质含量分析[J].江苏农业学报,2005,21(2):92-97.
LU Yan-hui, Li Yong, Chen Xue-xin, et al. Analysis of major nutrient and secondary substance contents in transgenic cotton cultivars[J]. Jiangsu Journal of Agricultural Sciences, 2005,21(2):92-97.
[40] YU Hui-lin, Li Yun-he, Wu Kong-ming. Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms[J]. Journal of Integrative Plant Biology, 2011, 53(7): 520-538.
[41] 季志平, 苏印泉. 栽培方式对杜仲皮次生代谢物含量的影响[J]. 西北植物学报, 2006, 26(9) : 1911-1915.
JI Zhi-ping, Su Yin-quan. Effect of planting modes on secondary metabolite contents in Eucommia ulmoides Barks[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(9): 1911-1915.
[42] 康建宏, 吴宏亮, 杨 涓,等. 不同施氮水平下枸杞主要次生代谢产物与多糖的关系研究[J].安徽农业科学,2008, 36(36): 16008- 16010.
KANG Jian-hong, Wu Hong-liang, Yang Juan, et al. Study on the relationship between the main secondary metabolites and polysaccharide in fruits of Lycium barbarum at different application amount of nitrogen[J]. Anhui Agriculture Science, 2008, 36(36): 16008-16010.
[43] 苏文华,张光飞, 周 鸿,等.氮素对短葶飞蓬生长和次生代谢产物积累的影响[J].云南植物研究, 2010, 32(1): 41-46.
SU Wen-hua, Zhang Guang-fei, Zhou Hong, et al. Effects of nitrogen on the growth and accumulation of secondary metabolites of Erigeron breviscapus(Compositae)[J]. Acta Botanica Yunnanica, 2010, 32(1): 41-46.
[44] MOHAMMAD Pessarakli. Handbook of plant and crop physiology[M]. 2th ed. Tucson, Arizona: Marcel Dekker Inc, Publishers, 2001:486-497.
[45] WATERMAN S M. Extrinsic factors in influencing production of secondary metabolites in plants[M]// Bernays E A. Insect-plant interactions: Vol 1. Boca Raton, FL: CRC Press, 1989:107-134.