不同玉米品种的茎秆性状对茎秆弹性和耐密性的响应
Response of Stalk Traits to Stalk Elasticity and Density Tolerance of Different Maize Cultivars
为了研究玉米茎秆性状与茎秆弹性和耐密性形成的相关性,进一步揭示植株抗倒伏机理,选用6个抗倒性不同的玉米品种为材料,设置了6.0万,7.5万,9.0万株/hm2 共3个种植密度,以田间茎秆拉倒角度为弹性评价指标,与植株和基部节间的形态特征,节间的解剖结构、物质积累量和力学特征进行相关性分析。结果表明,玉米株高、穗位高、基部节间长、粗、表皮厚度、硬皮组织厚度、维管束总数、小维管束鞘面积、单位长度鲜质量、干质量和各组分含量、穿刺和压折强度对茎秆拉倒角度有显著或极显著的影响,其中节间粗(r=0.521**)和单位长度干质量(r=0.562**)的影响最大。种植密度越大,节间粗、硬皮组织厚度、维管束总数、单位长度鲜质量、干质量、各组分含量、穿刺和压折强度越小或越少,茎秆的弹性越差,抗倒性越弱。不同品种间的茎秆性状存在显著差异,粒收1、创玉107、京农科728和MC278与弹性相关的性状优于其他品种,且随着密度的增大变幅较小,故茎秆弹性和耐密性较强。节间粗和单位长度干质量等性状对拉倒角度即有显著影响,增密后这些性状的变幅决定了茎秆的耐密性。
In order to study the correlation between stem traits and the formation of elasticity and density tolerance of maize,and further reveal the mechanism of lodging resistance,6 maize varieties with different lodging resistance were selected as materials,and 3 planting densities of 6.0×104,7.5×104 and 9.0×104 plants/ha were set.The stem pull lodging angle in the field was used as the evaluation index of elasticity,and the morphological characteristics between plants and basal nodes.The internode anatomical structure,material accumulation and mechanical characteristics were analyzed.The results showed that plant height,ear height,basal internode length,thickness,epidermal thickness,crusty tissue thickness,total vascular bundle,sheath area of small vascular bundle,fresh weight per unit length,dry weight per unit length and content of each component,puncture and folding strength had significant effects on the stem pull lodging angle,among which internode diameter(r=0.521**)and dry weight per unit length(r=0.562**)had the greatest effects.The greater the planting density,the smaller the internode diameter,the thickness of the hard skin tissue,the total number of vascular bundles,the fresh weight per unit length,the dry weight,the content of each component,the lodging resistance,the worse the elasticity of the stem.There were significant differences in stem traits among different varieties.The elasticity related traits of Lishou 1,Chuangyu 107,Jingnongke 728 and MC278 were better than those of other varieties,and the variation amplitude was smaller with the increase of density,so the elasticity and density tolerance were stronger.Traits such as internode diameter and dry weight per unit length had significant effects on stem pull lodging angle, that was stalk elasticity,and the variation amplitude of these traits after densification determined the density tolerance of stalk.
玉米 / 茎秆 / 弹性 / 耐密性 / 拉倒角度 {{custom_keyword}} /
Maize / Stalk / Elasticity / Density tolerance / Pull lodging angle {{custom_keyword}} /
表1 2019,2020年保定和辛集的倒伏率和拉倒角度Tab.1 The lodging percentage and stalk pull lodging angle of Baoding and Xinji in 2019 and 2020 |
密度/ (万株/hm2) Density | 品种 Cultivar | 倒伏率/% Lodging percentage | 拉倒角度/° Stalk pull lodging angle | |||||||
---|---|---|---|---|---|---|---|---|---|---|
保定Baoding 2020 | 辛集Xinji | 保定Baoding 2020 | 辛集Xinji | |||||||
2019 | 2020 | 2019 | 2020 | |||||||
6.0 | ZH1632 | 12.0±2.8ab | 10.5±2.8b | 0.0±0.0b | 45.0±5.0c | 78.0±4.2a | 70.0±14.1a | |||
京农科728 | 4.2±0.9c | 5.9±2.3bc | 0.0±0.0b | 51.0±3.6bc | 30.0±7.1c | 67.5±3.5a | ||||
MC278 | 0.0±0.0c | 29.4±6.6a | 0.0±0.0b | 63.3±14.6b | 30.0±7.1c | 55.0±21.2a | ||||
创玉107 | 16.7±6.6a | 0.0±0.0c | 0.0±0.0b | 47.0±2.6c | 78.0±4.2a | 70.0±21.2a | ||||
新单68 | 0.0±0.0c | 6.3±1.1bc | 7.1±3.6a | 78.0±2.8a | 45.0±0.0b | 72.5±3.5a | ||||
粒收1 | 5.0±1.4bc | 0.0±0.0c | 0.0±0.0b | 53.3±7.6bc | 67.0±5.7a | 82.5±10.6a | ||||
平均 | 6.3±6.8B | 8.7±10.7A | 1.2±3.0A | 56.3±12.4A | 54.7±21.9A | 69.6±13.6A | ||||
7.5 | ZH1632 | 14.3±2.2b | 12.5±3.8c | 38.9±11.3a | 57.5±3.5a | 37.5±10.6ab | 25.0±0.0d | |||
京农科728 | 44.4±10.0a | 13.6±1.8bc | 0.0±0.0c | 48.3±5.8a | 62.0±9.9 a | 51.0±8.5bc | ||||
MC278 | 24.0±4.8b | 41.2±3.4a | 0.0±0.0c | 62.7±4.0a | 22.5±10.6b | 65.0±7.1ab | ||||
创玉107 | 12.5±2.1b | 10.0±2.3c | 0.0±0.0c | 45.0±0.0a | 60.0±0.0a | 65.0±7.1ab | ||||
新单68 | 16.7±2.4b | 21.7±6.1b | 0.0±3.7b | 55.0±0.0a | 30.0±21.2ab | 40.0±0.0c | ||||
粒收1 | 0.0±0.0c | 0.0±0.0d | 0.0±0.0c | 63.7±19.6a | 58.5±19.1a | 67.5±3.5a | ||||
平均 | 18.6±14.6A | 16.5±13.6A | 8.1±15.3A | 55.4±10.4A | 45.1±19.3A | 52.3±16.8B | ||||
9.0 | ZH1632 | 30.3±6.2ab | 3.2±2.3b | 25.0±4.2a | 53.3±5.8a | 30.0±7.1ab | 21.0±1.4b | |||
京农科728 | 32.3±6.4ab | 0.0±0.0b | 11.5±4.6b | 43.7±7.5a | 30.0±14.1ab | 62.5±31.8a | ||||
MC278 | 37.0±7.1a | 17.2±2.0a | 0.0±0.0c | 61.7±7.6a | 25.0±7.1bc | 67.5±3.5a | ||||
创玉107 | 19.0±3.6bc | 18.5±0.9a | 0.0±0.0c | 40.0±17.3a | 30.0±0.0ab | 75.0±7.1a | ||||
新单68 | 0.0±0.0d | 16.1±4.6a | 3.6±3.6c | 56.0±3.6a | 10.0±0.0c | 50.0±7.1ab | ||||
粒收1 | 6.9±6.1cd | 0.0±0.0b | 0.0±0.0c | 60.0±18.0a | 45.0±0.0 a | 72.5±3.5a | ||||
平均 | 20.9±14.8A | 9.2±8.7A | 6.7±9.8A | 52.4±12.7A | 28.3±11.9B | 58.1±21.8AB | ||||
P-地点 | 0.001 | 0.090 | ||||||||
P-年际 | 0.022 | 0.000 | ||||||||
P-品种 | 0.002 | 0.044 | ||||||||
P-密度 | 0.006 | 0.006 | ||||||||
P-品种×密度 | 0.650 | 0.482 |
注:同一密度下,不同小写字母表示品种间差异显著(P<0.05);密度间差异显著性用不同大写字母表示(P<0.05)。 | |
Note:Values with the different lowercase letters are significantly different between cultivars at P<0.05,comparison within the same plant density only;the significance of the difference between densities is indicated by different capital letters(P<0.05).The same as |
表2 植株和基部第3节间的形态性状Tab.2 The morphological traits of plant and basal third internode |
密度/ (万株/hm2) Density | 品种 Cultivar | 株高/cm Plant height | 穗位高/cm Ear height | 穗位系数 Ear ratio | 穗位节 Ear node | 基部第3节 茎秆长/cm Length of basal third internode | 基部第3节 茎秆粗/cm Diameter of basal third internode |
---|---|---|---|---|---|---|---|
6.0 | ZH1632 | 266.8±1.8b | 86.9±1.5c | 0.33±0.00b | 8.0±0.0b | 12.4±0.7ab | 1.7±0.08c |
京农科728 | 256.1±6.3cd | 99.0±2.1ab | 0.39±0.01a | 7.7±0.1b | 13.0±0.6a | 1.8±0.00abc | |
MC278 | 248.6±0.8d | 98.0±4.5ab | 0.40±0.02a | 8.0±0.0b | 12.3±0.4abc | 1.9±0.01a | |
创玉107 | 276.0±4.6a | 93.4±1.0bc | 0.34±0.00b | 7.7±0.2b | 10.8±1.0c | 1.9±0.03ab | |
新单68 | 260.8±4.0bc | 97.8±0.5ab | 0.37±0.01a | 8.0±0.4b | 12.8±0.6a | 1.8±0.03bc | |
粒收1 | 260.8±0.9bc | 103.7±5.1a | 0.40±0.02a | 9.0±0.0a | 11.2±0.2bc | 1.9±0.02a | |
平均 | 261.5±9.3A | 96.5±5.9A | 0.37±0.03A | 8.1±0.5A | 12.1±1.0A | 1.8±0.07A | |
7.5 | ZH1632 | 262.5±2.5bc | 88.9±2.7c | 0.34±0.01d | 7.8±0.2c | 11.1±0.1bc | 1.6±0.02c |
京农科728 | 260.0±0.6c | 102.3±0.1b | 0.39±0.00bc | 8.0±0.0bc | 13.6±0.7a | 1.7±0.02ab | |
MC278 | 249.8±1.7d | 92.8±3.1bc | 0.37±0.01cd | 8.3±0.4bc | 9.9±0.0c | 1.6±0.03bc | |
创玉107 | 275.6±1.3a | 95.3±1.3bc | 0.34±0.00d | 7.8±0.4c | 11.7±0.2b | 1.7±0.03ab | |
新单68 | 275.3±6.7a | 116.2±5.5a | 0.42±0.01ab | 8.7±0.1ab | 13.1±1.2a | 1.7±0.06ab | |
粒收1 | 269.8±2.3ab | 114.1±7.5a | 0.42±0.02a | 9.3±0.2a | 11.0±0.1bc | 1.8±0.03a | |
平均 | 265.5±9.8A | 101.6±11.3A | 0.38±0.04A | 8.3±0.5A | 11.7±1.4A | 1.7±0.07B | |
9.0 | ZH1632 | 263.3±6.0ab | 92.7±4.2d | 0.35±0.01d | 8.0±0.0ab | 10.5±0.2d | 1.4±0.02b |
京农科728 | 261.3±5.6ab | 101.3±3.0c | 0.38±0.00b | 8.0±0.0ab | 13.6±0.1a | 1.6±0.00a | |
MC278 | 254.5±2.1b | 94.1±0.2d | 0.36±0.00d | 7.7±0.5b | 12.4±0.5ab | 1.6±0.04a | |
创玉107 | 255.9±2.6b | 96.5±2.0cd | 0.38±0.00bc | 8.3±0.1a | 12.0±1.1bc | 1.6±0.00a | |
新单68 | 269.2±2.4a | 117.9±2.5a | 0.43±0.01a | 8.7±0.1a | 12.5±0.5ab | 1.6±0.02a | |
粒收1 | 263.8±0.2ab | 109.5±2.9b | 0.42±0.01a | 8.7±0.7a | 11.5±0.1cd | 1.6±0.01a | |
平均 | 261.3±5.9AB | 102.0±9.6A | 0.39±0.03A | 8.2±0.5A | 12.1±1.2A | 1.6±0.08C |
表3 基部节间的解剖结构Tab.3 The anatomical structure of basal internode |
密度/ (万株/hm2) Density | 品种 Cultivar | 表皮厚度/μm TIE | 硬皮组织 厚度/mm TIMS | 小维管束数 NSVB | 大维管束数 NBVB | 维管束总数 TNVB | 小维管束 面积/mm2 ASVB | 大维管束 面积/mm2 ABVB | 维管束 总面积/mm2 TAVB | 小维管束 鞘面积/mm2 ASVS |
---|---|---|---|---|---|---|---|---|---|---|
6.0 | ZH1632 | 33.9±2.9bc | 1.1±0.02d | 270.0±2.8d | 228.0±1.4e | 498.0±2.8e | 12.9±1.1c | 16.1±1.2b | 29.0±0.1d | 10.9±0.5d |
京农科728 | 37.7±4.5ab | 1.0±0.05d | 270.5±7.8d | 261.0±0.0d | 531.5±7.8d | 13.4±1.3bc | 22.7±2.2a | 36.1±0.9bc | 11.4±1.0cd | |
MC278 | 42.9±1.6a | 1.5±0.04b | 284.0±7.1c | 296.5±3.5b | 580.5±3.5c | 15.2±0.4abc | 23.1±0.3a | 38.3±0.7b | 13.0±0.3bc | |
创玉107 | 32.8±1.2bc | 1.2±0.04c | 309.0±0.0b | 284.0±7.1c | 593.0±7.1b | 16.4±2.1ab | 18.9±1.4b | 35.3±0.9c | 14.2±0.6ab | |
新单68 | 43.5±0.7a | 1.9±0.07a | 305.0±1.4b | 288.0±1.4c | 593.0±1.4b | 18.3±0.8a | 24.8±1.0a | 43.1±1.7a | 15.6±1.0a | |
粒收1 | 28.5±0.6c | 1.3±0.02c | 324.5±3.5a | 305.0±1.4a | 629.5±2.1a | 18.0±1.2a | 25.4±0.9a | 43.4±0.5a | 15.4±1.0a | |
平均 | 36.6±5.9A | 1.3±0.32A | 293.8±21.6A | 277.1±27.1A | 570.9±45.6A | 15.7±2.4A | 21.8±3.6A | 37.5±5.2A | 13.4±1.0A | |
7.5 | ZH1632 | 28.7±0.6c | 1.1±0.03b | 295.0±11.3bc | 245.0±11.3c | 540.0±11.3c | 11.7±0.6b | 16.3±2.1c | 28.0±1.5e | 10.0±0.5c |
京农科728 | 32.0±1.9b | 1.0±0.01b | 302.0±7.1bc | 240.0±0.0c | 542.0±7.1c | 13.4±1.2b | 17.4±1.2bc | 30.8±2.2de | 11.4±0.1b | |
MC278 | 41.4±1.3a | 1.5±0.12a | 312.0±5.7ab | 287.0±0.0a | 599.0±5.7a | 15.4±0.7a | 19.3±0.6b | 34.7±0.8b | 13.2±0.5a | |
创玉107 | 29.8±0.4bc | 1.1±0.04b | 299.0±5.7bc | 263.0±0.0b | 562.0±5.7b | 12.4±0.2b | 19.1±0.7bc | 31.5±0.5cd | 10.7±0.3bc | |
新单68 | 38.3±1.1a | 1.1±0.02b | 292.5±2.1c | 278.0±5.7a | 570.5±4.9b | 16.6±0.6a | 23.7±0.3a | 40.3±0.3a | 14.2±0.5a | |
粒收1 | 27.3±1.7c | 1.1±0.03b | 326.0±8.5a | 281.0±1.4a | 607.0±8.5a | 16.7±0.3a | 17.5±1.2bc | 34.3±1.4bc | 14.2±0.5a | |
平均 | 32.9±5.5A | 1.1±0.18AB | 304.4±13.1A | 265.7±19.1A | 570.1±27.4A | 14.4±2.1A | 18.9±2.6B | 33.3±4.1B | 12.3±1.8A | |
9.0 | ZH1632 | 27.2±0.5d | 1.0±0.08ab | 276.3±3.9d | 219.0±4.2b | 495.3±3.9e | 12.3±0.4d | 14.4±0.1a | 26.7±0.3d | 10.4±0.3c |
京农科728 | 35.1±0.7bc | 0.9±0.06b | 298.0±8.5bc | 254.0±5.7a | 552.0±8.5bc | 15.9±1.9bc | 18.0±1.0b | 33.9±1.0b | 13.2±1.1b | |
MC278 | 42.1±4.4a | 0.9±0.01b | 284.0±1.4cd | 240.0±0.0a | 524.0±1.4d | 13.2±1.7cd | 16.7±1.1b | 30.0±1.0c | 10.8±1.3c | |
创玉107 | 38.0±1.5ab | 1.1±0.01a | 293.0±1.4bc | 242.0±1.4a | 535.0±1.4cd | 12.6±0.8d | 16.6±0.3b | 29.2±0.6cd | 10.9±0.8c | |
新单68 | 36.5±1.5abc | 1.0±0.04b | 306.0±11.3b | 257.0±14.1a | 563.0±14.1ab | 18.8±1.3ab | 21.9±0.9a | 40.7±2.2a | 15.7±0.7a | |
粒收1 | 31.0±2.7cd | 1.1±0.05a | 324.0±4.2a | 247.0±5.7a | 571.0±5.7a | 20.3±0.8a | 18.4±0.4b | 38.7±0.4a | 17.5±0.7a | |
平均 | 35.0±5.3A | 1.0±0.09B | 296.9±16.8A | 243.2±13.9B | 540.0±27.2B | 15.5±3.4A | 17.7±2.4B | 33.1±0.01B | 13.1±2.9A |
注:TIE.表皮厚度;TIMS. 硬皮组织厚度;NSVB.小维管束数;NBVB.大维管束数;TNVB.维管束总数;ASVB.小维管束面积;ABVB.大维管束面积;TAVB.维管束总面积;ASVS.小维管束鞘面积。 | |
Note:TIE. Thickness of internode epidermis; TIMS. Thickness of internode mechanical structure; NSVB. Number of small vascular bundles; NBVB. Number of big vascular bundles; TNVB. Total number of vascular bundles; ASVB. Area of small vascular bundles; ABVB.Area of big vascular bundles; TAVB.Total area of vascular bundles; ASVS.Area of small vascular sheath.The same as |
表4 基部第3节间的单位长度鲜质量、干质量和各组分含量Tab.4 Fresh weight,dry weight and each component content per unit length of basal third internodeg/cm |
密度/ (万株/hm2) Density | 品种 Cultivar | 单位长度 鲜质量 FWUL | 单位长度 干质量 DWUL | 单位长度 纤维素含量 CCUL | 单位长度木质 素含量 LCUL | 单位长度半 纤维素含量 HCCUL | 单位长度可 溶性糖含量 SSCUL | 单位长度 淀粉含量 SCUL |
---|---|---|---|---|---|---|---|---|
6.0 | ZH1632 | 2.5±0.2b | 0.35±0.01c | 96.6±1.7c | 34.2±0.6c | 83.9±1.4c | 14.2±0.3b | 17.5±0.3b |
京农科728 | 2.9±0.1ab | 0.52±0.00a | 154.4±1.0b | 55.0±0.2ab | 124.8±0.4a | 22.2±0.1a | 26.1±0.1a | |
MC278 | 2.8±0.0ab | 0.50±0.00a | 157.0±1.5b | 58.0±0.5a | 123.4±1.0a | 22.4±0.2a | 25.6±0.2a | |
创玉107 | 3.1±0.1a | 0.45±0.00b | 153.9±1.3b | 52.9±0.3b | 111.5±0.6b | 21.3±0.1ab | 24.3±0.2a | |
新单68 | 3.0±0.0a | 0.49±0.00ab | 180.2±1.1a | 59.0±0.4a | 123.4±0.8a | 23.5±0.2a | 26.8±0.2a | |
粒收1 | 3.2±0.0a | 0.48±0.02ab | 192.4±7.0a | 62.5±2.2a | 122.3±4.5a | 24.7±0.9a | 26.8±1.0a | |
平均 | 2.9±0.2A | 0.46±0.06A | 155.5±31.6A | 49.9±9.6A | 114.9±15.3A | 21.4±3.5A | 24.5±3.4A | |
7.5 | ZH1632 | 2.0±0.1c | 0.32±0.01c | 86.1±2.1d | 27.1±0.7d | 83.9±2.1d | 15.5±0.4d | 14.7±0.3c |
京农科728 | 2.6±0.2b | 0.46±0.00ab | 136.5±0.4c | 43.2±0.2b | 126.9±0.5b | 23.5±0.1b | 21.5±0.1ab | |
MC278 | 2.4±0.0bc | 0.38±0.01b | 122.5±3.0cd | 36.9±0.9c | 104.8±2.3c | 20.2±0.4bc | 17.8±0.4b | |
创玉107 | 2.9±0.1a | 0.50±0.00a | 183.2±0.1b | 51.6±0.0a | 143.8±0.0a | 26.4±0.0a | 24.1±0.0a | |
新单68 | 2.3±0.2bc | 0.33±0.00c | 129.4±0.7c | 35.6±0.2c | 94.3±0.7cd | 19.1±0.1c | 16.3±0.1bc | |
粒收1 | 3.1±0.1a | 0.47±0.01ab | 200.3±3.3a | 54.1±0.9a | 138.0±2.4a | 27.8±0.4a | 24.2±0.4a | |
平均 | 2.7±0.4A | 0.39±0.07B | 143.0±40.0AB | 41.4±9.8AB | 110.7±23.4A | 22.1±4.5A | 19.8±3.9AB | |
9.0 | ZH1632 | 1.6±0.1b | 0.25±0.01c | 73.1±3.2d | 22.1±1.0d | 56.6±2.5d | 12.5±0.5d | 10.4±0.4c |
京农科728 | 2.1±0.2a | 0.36±0.01ab | 115.0±1.7bc | 34.3±0.5bc | 81.9±1.3b | 18.0±0.3bc | 14.9±0.2b | |
MC278 | 1.9±0.0ab | 0.31±0.01b | 106.7±2.4c | 31.4±0.7c | 71.7±1.6c | 16.6±0.4c | 13.3±0.3bc | |
创玉107 | 2.1±0.2a | 0.34±0.00ab | 127.3±1.1b | 35.5±0.3b | 82.2±0.6b | 18.9±0.2bc | 15.1±0.1b | |
新单68 | 2.0±0.0ab | 0.29±0.00bc | 116.8±1.8bc | 31.3±0.4c | 69.0±0.9c | 16.3±0.2c | 13.4±0.2bc | |
粒收1 | 2.3±0.0a | 0.41±0.00a | 180.8±0.6a | 49.3±0.1a | 100.8±0.4a | 23.1±0.1a | 19.3±0.0a | |
平均 | 2.0±0.3B | 0.33±0.05C | 120.9±33.5B | 34.0±8.5B | 78.6±14.4B | 17.5±3.3B | 14.4±2.8B |
注:FWUL.单位长度鲜质量;DWUL.单位长度干质量;CCUL.单位长度纤维素含量;LCUL.单位长度木质素含量;HCCUL.单位长度半纤维素含量;SSCUL.单位长度可溶性糖含量;SCUL.单位长度淀粉含量。 | |
Note:FWUL.Fresh weight per unit length; DWUL.Dry weight per unit length; CCUL.Cellulose content per unit length; LCUL.Lignin content per unit length; HCCUL.Hemicellulose content per unit length; SSCUL.Soluble sugar content per unit length; SCUL.Starch content per unit length.The same as |
图2 基部第3节间穿刺和压折强度RPS.穿刺强度;BS.压折强度。同一密度下,不同小写字母的品种差异显著(P<0.05)。密度间差异显著性用不同大写字母表示(P<0.05)。Fig.2 The rind penetration strength(RPS)and bending strength(BS)of basal third internode RPS.Rind penetration strength;BS.Bending strength.Values with the different lowercase letters are significantly different between cultivars at P<0.05, comparison within the same plant density only.The significance of the difference between densities is indicated by different capital letters(P<0.05). |
表5 田间植株拉倒角度与植株和基部节间性状的相关系数Tab.5 Correlation coefficients between plant lodging angle in field and traits of plant and basal internode |
相关性状 Related traits | 拉倒角度 Stalk pull lodging angle | 相关性状 Related traits | 拉倒角度 Stalk pull lodging angle |
---|---|---|---|
株高 Plant height | 0.427** | 单位长度淀粉含量 SCUL | 0.333* |
穗位高 Ear height | 0.406** | 表皮厚度 TIE | 0.094 |
穗位系数Ear ratio | 0.232 | 硬皮组织厚度 TIMS | 0.338* |
穗位节 Ear node | 0.199 | 小维管束数 NSVB | 0.284 |
节间长 Internode length | 0.432** | 大维管束数 NBVB | 0.313 |
节间粗Internode diameter | 0.521** | 维管束总数 TNVB | 0.343* |
单位长度鲜质量 FWUL | 0.295* | 小维管束面积 ASVB | 0.311 |
单位长度干质量 DWUL | 0.562** | 大维管束面积 ABVB | 0.242 |
单位长度纤维素含量CCUL | 0.395* | 维管束总面积 TAVB | 0.306 |
单位长度木质素含量 LCUL | 0.395* | 小维管束鞘面积 ASVS | 0.339* |
单位长度半纤维素含量HCCUL | 0.285 | 穿刺强度 RPS | 0.439** |
单位长度可溶性糖含量 SSCUL | 0.346* | 压折强度BS | 0.423** |
注:RPS.穿刺强度;BS.压折强度。*和**分别表示P<0.05和P<0.01的显著水平。 | |
Note:RPS. Rind penetration strength; BS. Bending strength.*and**indicate significant difference at P<0.05 and P<0.01 level, respectively. |
[1] |
王浥州, 张万旭, 王克如, 肖春花, 周先林, 张园梦, 翟娟, 谢瑞芝, 明博, 侯鹏, 李少昆. 新疆玉米机械收获籽粒含水率与相关性状的关系[J]. 西北农业学报, 2019, 28(9):1419-1427.doi:10.7606/j.issn.1004-1389.2019.09.005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
李银昌, 张兆玉, 王孝虎, 朱如华, 丁山, 杨锦忠. 茎秆韧性评价方法及其应用[C]. 中国作物学会. 2019 年中国作物学会学术年会论文摘要集. 北京: 科学出版社,2019:271.doi:10.26914/c.cnkihy.2019.016209.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
祁炳琴. 种植密度对玉米茎秆解剖结构及结构性物质合成的影响[D]. 石河子: 石河子大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
勾玲, 赵明, 黄建军, 张宾, 李涛, 孙锐. 玉米茎秆弯曲性能与抗倒能力的研究[J]. 作物学报, 2008, 34(4):653-661.doi:10.3321/j.issn:0496-3490.2008.04.017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
陈睿鹏. 玉米茎秆倒伏角度和拉力角度实时测量方法研究[D]. 郑州: 河南农业大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王庭杰, 张亮, 韩琼, 郑凤霞, 王天琪, 冯娜娜, 王太霞. 玉米茎秆细胞壁和组织构建对抗压强度的影响[J]. 植物科学学报, 2015, 33(1):109-115.doi:10.11913/PSJ.2095-0837.2015.10109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
边大红, 刘梦星, 牛海峰, 魏钟博, 杜雄, 崔彦宏. 施氮时期对黄淮海平原夏玉米茎秆发育及倒伏的影响[J]. 中国农业科学, 2017, 50(12):2294-2304.doi:10.3864/j.issn.0578-1752.2017.12.010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10):1688-1695.doi:10.3321/j.issn:0496-3490.2007.10.019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
董学会, 段留生, 孟繁林, 何钟佩, 李召虎. 30%已·乙水剂对玉米产量和茎秆质量的影响[J]. 玉米科学, 2006, 14(1):138-140,143.doi:10.3969/j.issn.1005-0906.2006.01.043.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
李春秀, 齐力旺, 王建华, 汪阳东, 史胜青, 张守攻. 植物纤维素合成酶基因和纤维素的生物合成[J]. 生物技术通报, 2005(4):5-11.doi:10.3969/j.issn.1002-5464.2005.04.002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
郭玉华, 朱四光, 张龙步. 不同栽培条件对水稻茎秆生化成分的影响[J]. 沈阳农业大学学报, 2003, 34(2):89-91.doi:10.3969/j.issn.1000-1700.2003.02.003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
蒋傲男, 闫静琦, 卢海博, 赵海超, 黄智鸿. 不同春玉米品种茎秆显微结构对抗折强度的响应[J]. 玉米科学, 2020, 28(5):53-59.doi:10.13597/j.cnki.maize.science.20200509.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
罗茂春, 田翠婷, 李晓娟, 林金星. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述[J]. 西北植物学报, 2007, 27(11):2346-2353.doi:10.3321/j.issn:1000-4025.2007.11.034.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
任佰朝, 张吉旺, 李霞, 范霞, 董树亭, 刘鹏, 赵斌. 大田淹水对高产夏玉米抗倒伏性能的影响[J]. 中国农业科学, 2013, 46(12):2440-2448.doi:10.3864/j.issn.0578-1752.2013.12.005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系[J]. 作物学报, 2011, 37(9):1616-1622.doi:10.3724/SP.J.1006.2011.01616.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
沈学善, 李金才, 屈会娟, 魏凤珍, 张一, 武文明. 砂姜黑土区小麦玉米秸秆全量还田对玉米抗倒性能的影响[J]. 中国农业科学, 2011, 44(10):2005-2012.doi:10.3846/j.issn.0578-175.2011.10.005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |