壳寡糖对羽衣甘蓝芽苗硫代葡萄糖苷及抗氧化活性的影响
Effects on Glucosinolates and Antioxidant Activity of Chitooligosaccharides on Kale Sprouts
为探究壳寡糖(COS)对羽衣甘蓝芽苗生长的影响,为芽苗生产上壳寡糖的合理施用提供参考,以京羽一号为试验材料,在种子发芽后施用不同质量浓度COS(25,50,75,100 mg/L)溶液,观察壳寡糖对羽衣甘蓝芽苗生长指标、硫代葡萄糖苷(简称硫苷)含量及抗氧化能力的影响。结果表明,施用75 mg/L COS处理的羽衣甘蓝芽苗总酚、总黄酮、总硫苷质量以及黑芥子酶活性和DPPH自由基清除率呈现上升趋势,且与对照差异显著,较对照分别增加25.99%,17.99%,29.68%,141.88%和2.51%;100 mg/L COS处理的羽衣甘蓝芽苗的产量及总酚、总黄酮、钠和硼含量及黑芥子酶活性也得到了相应提升,且与对照差异显著,较对照分别增加了15.21%,21.29%,22.47%,15.97%,32.63%,97.71%。经相关性分析,可以得出芽苗的产量与类胡萝卜素、总酚、总黄酮含量及DPPH自由基清除率均呈显著正相关关系。综上可得,经壳寡糖处理后可提高羽衣甘蓝芽苗的产量,提升芽苗的营养品质和抗氧化能力,增加芽苗的食用价值。
In order to investigate the effect of chitooligosaccharides (COS) on the growth of kale sprouts and to provide a reference for the rational application of chitooligosaccharides in the production of sprouts,this study used Jingyu 1 as the test material,and applied different concentrations of COS (25,50,75,100 mg/L) to the seeds after germination to observe the effects of COS on the growth indexes,content of glucosinolates and antioxidant capacity.The results showed that total phenolics content,total flavonoids content,total glucosinolates content,myrosinase enzyme activity and DPPH free radicals scavenging rate of 75 mg/L COS-treated kale sprouts showed an upward trend,and the differences were significant with the control,with increases of 25.99%,17.99%,29.68%,141.88%,and 2.51%,respectively;the yield and total phenolics content,total flavonoids content,sodium content,boron content and myrosinase enzyme activity,of 100 mg/L COS-treated kale sprouts were also enhanced accordingly and differed significantly from the control,increasing by 15.21%,21.29%,22.47%,15.97%,32.63%,97.71%,respectively.After correlation analysis,it could be obtained that the yield of sprouted seedlings was significantly and positively correlated with the content of carotenoids,total phenolics,and total flavonoids and DPPH free radicals scavenging rate.In conclusion,chitosan treatment could increase the yield of kale sprouts,improve the nutritional quality and antioxidant capacity of sprouts,and increase the edible value of sprouts.
羽衣甘蓝 / 壳寡糖 / 芽苗 / 生长 / 抗氧化能力 / 硫苷 {{custom_keyword}} /
Kale / Chitooligosaccharides / Sprouts / Growth / Antioxidant capacity / Glucosinolates {{custom_keyword}} /
表1 壳寡糖对羽衣甘蓝芽苗生长指标的影响Tab.1 Effect of chitooligosaccharides on the growth index of kale sprouts |
处理 Treatments | 株高/cm Plant height | 单株质量/mg Plant weight | 含水率/% Water content |
---|---|---|---|
CK | 2.48±0.05a | 28.54±2.59b | 0.92±0.01a |
T1 | 2.33±0.06a | 28.42±2.55b | 0.91±0.01a |
T2 | 2.60±0.19a | 29.67±2.70ab | 0.91±0.01a |
T3 | 2.55±0.08a | 31.46±0.38ab | 0.92±0.00a |
T4 | 2.56±0.20a | 32.88±1.44a | 0.92±0.01a |
注:不同小写字母表示不同处理在0.05水平差异显著。 | |
Note:Different lowercase letters in the same column of the same cultivar indicate significant differences(P<0.05).The same as |
表2 壳寡糖对羽衣甘蓝芽苗光合色素含量的影响Tab.2 Effect of chitooligosaccharides on photosynthetic pigments of kale sprouts |
处理 Treatments | 叶绿素a含量/ (mg/g) Chla content | 叶绿素b含量/ (mg/g) Chlb content | 总叶绿素含量/ (mg/g) Chl(a+b)content | 叶绿素a/b Chl(a/b) | 类胡萝卜素含量/ (mg/g) Car content |
---|---|---|---|---|---|
CK | 0.32±0.02ab | 0.14±0.01a | 0.47±0.02ab | 2.27±0.04c | 5.69±0.22ab |
T1 | 0.30±0.01b | 0.13±0.01a | 0.43±0.02bc | 2.33±0.04c | 5.27±0.24b |
T2 | 0.34±0.02a | 0.13±0.01a | 0.47±0.03ab | 2.57±0.07b | 5.86±0.37a |
T3 | 0.35±0.01a | 0.13±0.01a | 0.48±0.02a | 2.62±0.16b | 6.06±0.23a |
T4 | 0.30±0.02b | 0.11±0.02b | 0.41±0.04c | 2.85±0.23a | 5.35±0.38b |
表3 壳寡糖对羽衣甘蓝芽苗脂肪族硫苷含量的影响Tab.3 Effect of chitooligosaccharides on the content of aliphatic glucosinolates in kale sproutsμg/g |
处理 Treatments | 2-丙烯基硫苷 SIN | 3-丁烯基硫苷 NAP | 2-羟基-3-丁烯 基硫苷 PRO | 4-甲硫基丁烯 基硫苷 ERU | 4-甲基亚磺酰基- 3-丁烯基硫苷 RAE | 4-甲基硫氧 丁基硫苷 RAA | 5-甲基亚磺酰 基戊基硫苷 ALY |
---|---|---|---|---|---|---|---|
CK | 967.95±46.59ab | 64.23±5.31c | 577.90±0.01c | 86.46±0.31d | 0.03±0.04a | 289.00±9.11e | 6.75±0.60c |
T1 | 906.00±58.00b | 79.74±1.88b | 736.83±60.41b | 102.59±5.96c | 0.09±0.13a | 353.62±9.88d | 9.64±0.01b |
T2 | 780.71±8.56c | 60.40±2.74c | 667.50±18.83b | 103.47±1.84c | 0.07±0.10a | 381.52±0.52c | 8.48±0.86bc |
T3 | 1 014.68±31.76a | 114.50±6.76a | 847.43±19.00a | 161.44±3.75a | 0.09±0.13a | 492.88±14.38a | 14.63±1.27a |
T4 | 879.88±13.02b | 82.84±3.67b | 677.06±22.55b | 116.48±1.40b | 0.01±0.02a | 410.95±11.31b | 10.14±0.33b |
表4 壳寡糖对羽衣甘蓝芽苗吲哚族硫苷含量的影响Tab.4 Effect of chitooligosaccharides on the content of indole glucosinolates in kale sproutsμg/g |
处理 Treatments | 3-甲基吲哚 基硫苷 GBC | 4-甲基吲哚基-3 甲基硫苷 4ME | 1-甲基吲哚基-3 甲基硫苷 NEO |
---|---|---|---|
CK | 113.20±2.56cd | 105.06±0.94d | 105.56±1.16b |
T1 | 143.14±3.12b | 154.40±4.52a | 77.24±5.16e |
T2 | 110.43±1.88d | 124.65±0.58b | 131.87±2.39a |
T3 | 159.64±4.97a | 112.93±1.05c | 85.04±1.99d |
T4 | 120.86±5.08c | 114.89±0.32c | 97.05±0.12c |
表5 壳寡糖对羽衣甘蓝芽苗矿质元素含量的影响Tab.5 Effect of chitooligosaccharides on the mineral element content of kale sproutsμg/g |
处理 Treatments | 磷含量 P content | 钾含量 K content | 镁含量 Mg content | 钠含量 Na content | 硼含量 B content | 铜含量 Cu content |
---|---|---|---|---|---|---|
CK | 878.69±2.29a | 811.10±25.89ab | 424.86±2.44a | 96.42±0.85d | 0.95±0.04c | 0.23±0.02a |
T1 | 849.99±0.10c | 843.24±10.17a | 401.65±0.21c | 105.10±1.53b | 0.95±0.01c | 0.23±0.00a |
T2 | 864.26±0.20b | 807.19±10.91b | 421.26±2.31a | 104.64±0.95b | 1.01±0.04b | 0.22±0.00a |
T3 | 815.82±6.93d | 751.76±22.77c | 409.22±6.02b | 101.85±1.40c | 1.06±0.02b | 0.23±0.01a |
T4 | 849.24±2.22c | 789.63±12.81b | 421.31±0.05a | 111.82±0.22a | 1.26±0.03a | 0.23±0.01a |
图5 壳寡糖对羽衣甘蓝芽苗植物激素的总体聚类横向为样品名称,纵向为代谢物信息;不同颜色为不同相对含量标准化处理后得到的不同数值进行填充的颜色(红色代表高含量,绿色代表低含量)。Fig.5 Overall clustering of phytohormones of chitooligosaccharides on kale sprouts Horizontal is the name of the sample,vertical is the metabolite information;different colors are the colors filled with different values obtained from the normalization treatment of different relative contents (red represents high content,green represents low content). |
表6 COS处理对植株生长、抗氧化性、硫苷含量及相关激素间的相关性分析Tab.6 Correlation analysis between COS treatments on plant growth, antioxidant properties,glucosinolates content and related hormones |
指标 Indexes | 株高 Plant height | 单株质量 Plant weight | 类胡萝卜 素含量 Carotenoid content | 总酚含量 Total phenolics content | 总黄酮含量 Total flavonoids content | DPPH自由 基清除率 DPPH free radical clearance rate | 总硫苷含量 Total glucosinolates content | 黑芥子 酶活性 Myrosinase activity | L-苯丙 氨酸含量 Phe content | L-色氨 酸含量 TRP content |
---|---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 1.000 | |||||||||
单株质量 Plant weight | 0.148 | 1.000 | ||||||||
类胡萝卜素含量 Carotenoid content | 0.272 | 0.626* | 1.000 | |||||||
总酚含量 Total phenolics content | 0.511 | 0.524* | 0.546* | 1.000 | ||||||
总黄酮含量 Total flavonoids content | 0.497 | 0.518* | 0.579* | 0.982** | 1.000 | |||||
DPPH自由基清除率 | 0.298 | 0.756* | 0.644* | 0.529 | 0.456 | 1.000 | ||||
DPPH free radical clearance rate | ||||||||||
总硫苷含量 Total glucosinolates content | -0.152 | 0.31 | 0.539 | 0.345 | 0.382 | 0.559 | 1.000 | |||
黑芥子酶活性 Myrosinase activity | 0.179 | 0.456 | 0.539* | 0.282 | 0.279 | 0.827** | 0.745* | 1.000 | ||
L-苯丙氨酸含量Phe content | -0.200 | 0.067 | 0.483 | 0.500 | 0.450 | 0.464 | 0.771 | 0.533 | 1.000 | |
L-色氨酸含量TRP content | 0.267 | 0.467 | 0.533 | 0.717* | 0.700* | 0.580 | 0.771 | 0.633 | 0.717* | 1.000 |
注:*表示在0.05水平下显著相关(双尾);**表示在0.01水平下极显著相关(双尾)。 | |
Note:* indicates significant correlation at the 0.05 level (two-tailed);**indicates extremely significant correlation at the 0.01 level (two-tailed). |
[1] |
张和义, 胡萌潮, 李苏迎. 芽苗菜生产新技术[M]. 北京: 金盾出版社, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
车功恒, 张国华, 肖军霞, 李晓丹, 郭丽萍. 蓝光光周期对甘蓝芽苗菜营养品质的影响[J]. 食品研究与开发, 2022, 43(14):16-22.doi:10.12161/j.issn.1005-6521.2022.14.003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
范丽萍, 刘志伟, 焦文娟, 黄利华. 壳寡糖复合物的制备及其功效研究进展[J]. 食品工业科技, 2022, 43(9):404-415.doi:10.13386/j.issn1002-0306.2021040148.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
杨顺, 唐鸿吕, 许忠民, 黄炜, 李大伟, 费思明, 魏文婧. 壳寡糖对盐胁迫下甘蓝幼苗生理特性的影响[J]. 分子植物育种, 2023, 20:1-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
冶楠, 朱艳, 赵元寿, 朱建宁, 门佳伟, 陈富, 孔德媛, 张卫兵, 宗元元, 李永才. 壳寡糖浸种对马铃薯微型薯芽生长和内源激素含量的影响[J]. 中国农业科学, 2023, 56(4):788-800.doi:10.3864/j.issn.0578-1752.2023.04.016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
田璐. NaCl和CaCl2处理对西兰花芽苗菜营养与功能品质的影响[D]. 南京: 南京农业大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
赵登奇, 孙亚天, 黄建颖, 宋亦超. 西兰花叶中生物活性成分的测定[J]. 核农学报, 2020, 34(6):1266-1271.doi:10.11869/j.issn.100-8551.2020.06.1266.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
刘倩男, 黄伟, 丁云花, 王亚钦, 胡丽萍, 赵学志, 何洪巨, 刘光敏. 青花菜中硫代葡萄糖苷RAA和GBC的近红外光谱快速测定[J]. 中国农业科学, 2020, 53(21):4497-4506.doi:10.3864/j.issn.0578-1752.2020.21.017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
李昕悦, 杨润强, 王沛, 田璐, 顾振新. 芝麻菜种子萌发过程中芽苗生长和硫苷代谢[J]. 食品工业科技, 2018, 39(2):51-55,60.doi:10.13386/j.issn1002-0306.2018.02.010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
初婷, 彭畅, 郭丽萍. MgSO4处理对西兰花芽苗菜生理活性物质和抗氧化能力的影响[J]. 食品科学, 2018, 39(11):53-59.doi:10.7506/spkx1002-6630-201811009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
张志鹏, 傅兆麟. 小麦叶片叶绿素含量与产量关系研究进展综述[J]. 安徽农学通报, 2015, 21(10):36-37,81.doi:10.16377/j.cnki.issn1007-7731.2015.10.014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
周桂, 靳晓芸, 邓光辉, 丘立杭, 邹成林, 李杨瑞. 壳寡糖诱导甘蔗叶多酚与防御酶活性的变化[J]. 南方农业学报, 2011, 42(8):874-877.doi:10.3969/j.issn.2095-1191.2011.08.011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
程坤, 杨丽梅, 方智远, 刘玉梅, 庄木, 张扬勇, 孙培田. 十字花科植物中主要硫代葡萄糖苷合成与调节基因的研究进展[J]. 中国蔬菜, 2010(12):1-6.doi:10.19928/j.cnki.1000-6346.2010.12.001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
王枭, 王齐蕾, 郑孝桦, 吕新刚. 不同品种西兰花芽中黑芥子酶的筛选、微囊化及特性评价[C]. 西安: 中国食品科学技术学会, 2020.doi:10.26914/c.cnkihy.2020.021900.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
孙艳伟, 张泽生, 王田心, 李雨蒙, 秦程广. 十字花科植物中黑芥子酶的研究进展[J]. 食品研究与开发, 2017, 38(11):216-220.doi:10.3969/j.issn.1005-6521.2017.11.048.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
王永祥, 张淑萍, 丁亚平, 刘嘉扬, 袁惠娟, 潘璐. 大别山区野生黎豆中微量元素的测定与品质评价[J]. 理化检验-化学分册, 2008, 44(1):63-65.doi:10.3321/j.issn:1001-4020.2008.01.024.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
郭丽丽, 赵竹青, 石磊, 朱端卫, 耿明建. 硼对不同硼效率甘蓝型油菜嫁接植株下部叶片矿质养分含量的影响[J]. 中国油料作物学报, 2010, 32(1):89-93.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
孙丽, 李贞霞, 王广印, 刘香婷. 不同品种直筒型大白菜的营养品质分析[J]. 广东农业科学, 2013, 40(20):35-37.doi:10.16768/j.issn.1004-874X.2013.20.059.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |