红花CtANR2CtANR3基因的克隆、结构及表达模式分析

鲁丹丹, 谭政委, 余永亮, 李磊, 许兰杰, 杨红旗, 杨青, 董薇, 安素妨, 梁慧珍

华北农学报. 2023, 38(1): 84-93

华北农学报 ›› 2023, Vol. 38 ›› Issue (1) : 84-93. DOI: 10.7668/hbnxb.20193450
作物遗传育种·种质资源·生物技术

红花CtANR2CtANR3基因的克隆、结构及表达模式分析

作者信息 +

Cloning,Structure and Expression Profile Analysis of CtANR2 and CtANR3 Genes from Carthamus tinctorius L.

Author information +
History +

摘要

原花青素是植物中广泛存在的一类黄酮类化合物,是人类膳食的重要营养成分,在防治病虫害方面也发挥着重要作用,花青素还原酶(ANR)是合成原花青素的关键酶。以大果球红花品种为材料,克隆得到2个CtANR基因。生物信息学分析表明,CtANR2CtANR3的编码区分别为1 020,1 023 bp,对应基因组序列中均含有5个外显子和4个内含子,第1个外显子长度不同,其余4个外显子长度一致,内含子长度差异较大。CtANR2CtANR3基因编码蛋白质的氨基酸数目分别为339,340个,二级结构都主要由α-螺旋和无规则卷曲构成,都属于水溶性蛋白,但CtANR2蛋白不稳定,而CtANR3为稳定的亲水性蛋白。此外,2个蛋白质都不存在信号肽和跨膜结构,可能定位于细胞外。序列比对及系统进化分析表明,CtANR2和CtANR1同源性最高,亲缘关系最近,3个CtANR蛋白与菊科植物ANR蛋白进化关系最近,与茄科、锦葵科和桑科植物ANR蛋白也同属一个大分支。组织特异性表达分析发现,CtANR2CtANR1组织表达模式相似,都是在花中的表达量最高,初期果球表达量最低,而CtANR3则在苞片中表达量最高,根和初期果球中表达量最低。三者在不同激素胁迫下呈现出不同的表达模式,CtANR2CtANR1在不同激素处理后表达量均下降,而CtANR3在5种激素处理后表达量均有不同程度的升高。以上结果表明,红花3个CtANR基因可能在红花不同发育阶段及抵抗非生物胁迫中有不同的分工。

Abstract

As part of flavone compounds,proanthocyanidins (PAs)play important roles in defense against pests and diseases,and they are also a kind of nutritionally valuable component of human diet.Anthocyanidin reductases (ANRs)are involved in the biosynthesis of PAs.We cloned two CtANR genes from Carthamus tinctorius L..Bioinformatic analysis showed that the full-length CDS sequences of CtANR2 and CtANR3 were 1 020 and 1 023 bp,respectively.Both of the genomic sequences contained five exons and four introns,the length of the first exon was different while the other four exons were the same,and the lengths of introns varied greatly.CtANR2 and CtANR3 genes encoded proteins with amino acid number of 339 and 340,respectively,and their secondary structures were mainly composed of α-helix and random curl.Both of them were hydrophilic proteins,CtANR2 protein was unstable,while CtANR3 was a stable hydrophilic protein.In addition,the two proteins both had no signal peptide sequence and transmembrane structure,and might be located outside the cells.Sequence alignment and phylogenetic analysis showed that CtANR2 and CtANR1 had the highest homology and the closest genetic relationship.The three CtANR proteins had the closest evolutionary relationship with ANR of Asteraceae,and also belonged to the same large branch with ANR of Solanaceae,Malvacede and Moraceae.Expression analysis showed that the tissue expression patterns of CtANR2 and CtANR1 were similar with the highest expression level in flowers and the lowest expression level in early fruit balls,while CtANR3 was highly expressed in bracts and almost not expressed in roots and early fruit balls.They displayed different expression patterns under different hormone treatments.The expressions of CtANR2 and CtANR1 were decreased after different hormone treatments,while the expression levels of CtANR3 were increased to different degrees after hormone treatments.These results suggest that CtANR genes might play different roles in different development stages and resistance to abiotic stresses of Carthamus tinctorius L..

关键词

红花 / 花青素还原酶 / 基因克隆 / 基因结构 / 表达模式

Key words

Carthamus tinctorius L. / Anthocyanidin reductase / Gene cloning / Gene structure / Expression profile

本文二维码

引用本文

导出引用
鲁丹丹 , 谭政委 , 余永亮 , 李磊 , 许兰杰 , 杨红旗 , 杨青 , 董薇 , 安素妨 , 梁慧珍. 红花CtANR2CtANR3基因的克隆、结构及表达模式分析. 华北农学报. 2023, 38(1): 84-93 https://doi.org/10.7668/hbnxb.20193450
Dandan LU , Zhengwei TAN , Yongliang YU , Lei LI , Lanjie XU , Hongqi YANG , Qing YANG , Wei DONG , Sufang AN , Huizhen LIANG. Cloning,Structure and Expression Profile Analysis of CtANR2 and CtANR3 Genes from Carthamus tinctorius L.. Acta Agriculturae Boreali-Sinica. 2023, 38(1): 84-93 https://doi.org/10.7668/hbnxb.20193450

参考文献

[1]
Abeynayake S W, Panter S, Chapman R, Webster T, Rochfort S, Mouradov A, Spangenberg G. Biosynthesis of proanthocyanidins in white clover flowers:Cross talk within the flavonoid pathway[J]. Plant Physiology, 2012, 158(2):666-678.doi:10.1104/pp.111.189258.
[2]
Matsui K, Hisano T, Yasui Y, Mori M, Walker A R, Morishita T, Katsu K. Isolation and characterization of genes encoding leucoanthocyanidin reductase(FeLAR)and anthocyanidin reductase(FeANR)in buckwheat(Fagopyrum esculentum)[J]. Journal of Plant Physiology, 2016, 205:41-47.doi:10.1016/j.jplph.2016.08.010.
[3]
Mellway R D, Tran L T, Prouse M B, Campbell M M, Constabel C P. The wound-,pathogen-,and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar[J]. Plant Physiology, 2009, 150(2):924-941.doi:10.1104/pp.109.139071.
[4]
Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins-a final frontier in flavonoid research?[J]. The New Phytologist, 2005, 165(1):9-28.doi:10.1111/j.1469-8137.2004.01217.x.
[5]
Ulusoy S, Ozkan G, Yucesan F B, Ersöz Ş, Orem A, Alkanat M, Yuluvgˇ E, Kaynar K, Al S. Anti-apoptotic and anti-oxidant effects of grape seed proanthocyanidin extract in preventing cyclosporine A-induced nephropathy[J]. Nephrology, 2012, 17(4):372-379.doi:10.1111/j.1440-1797.2012.01565.x.
[6]
Sobeh M, Mahmoud M F, Abdelfattah M A O, Cheng H, El-Shazly A M, Wink M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo[J]. Journal of Ethnopharmacology, 2018, 213:38-47.doi:10.1016/j.jep.2017.11.007.
[7]
邢宝松, 张家庆, 任巧玲, 吕玲燕, 王献伟, 陈俊峰, 高彬文, 马强. 原花青素B2对猪颗粒细胞氧化损伤的保护作用及机制研究[J]. 河南农业科学, 2022, 51(1):146-153.doi:10.15933/j.cnki.1004-3268.2022.01.018.
Xing B S, Zhang J Q, Ren Q L, L Y, Wang X W, Chen J F, Gao B W, Ma Q. Protective effect and mechanism of proanthocyanidins B2 on oxidative damage in porcine granulosa cells[J]. Journal of Henan Agricultural Sciences, 2022, 51(1):146-153.
[8]
Tohge T, de Souza L P, Fernie A R. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants[J]. Journal of Experimental Botany, 2017, 68(15):4013-4028.doi:10.1093/jxb/erx177.
[9]
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie A R. The flavonoid biosynthetic pathway in Arabidopsis:Structural and genetic diversity[J]. Plant Physiology and Biochemistry, 2013, 72:21-34.doi:10.1016/j.plaphy.2013.02.001.
[10]
Tanner G J, Francki K T, Abrahams S, Watson J M, Larkin P J, Ashton A R. Proanthocyanidin biosynthesis in plants.purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA[J]. The Journal of Biological Chemistry, 2003, 278(34):31647-31656.doi:10.1074/jbc.m302783200.
[11]
Xie D Y, Sharma S B, Paiva N L, Ferreira D, Dixon R A. Role of anthocyanidin reductase,encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299(5605):396-399.doi:10.1126/science.1078540.
[12]
Fujita A, Soma N, Goto-Yamamoto N, Shindo H, Kakuta T, Koizumi T, Hashizume K. Anthocyanidin reductase gene expression and accumulation of flavan-3-ols in grape berry[J]. American Journal of Enology and Viticulture, 2005, 56(4):336-342.doi:10.5344/ajev.2005.56.4.336.
[13]
Gargouri M, Gallois B, Chaudière J. Binding-equilibrium and kinetic studies of anthocyanidin reductase from Vitis vinifera[J]. Archives of Biochemistry and Biophysics, 2009, 491(1/2):61-68.doi:10.1016/j.abb.2009.09.010.
[14]
Punyasiri P A N, Abeysinghe I S B, Kumar V, Treutter D, Duy D, Gosch C, Martens S, Forkmann G, Fischer T C. Flavonoid biosynthesis in the tea plant Camellia sinensis:Properties of enzymes of the prominent epicatechin and catechin pathways[J]. Archives of Biochemistry and Biophysics, 2004, 431(1):22-30.doi:10.1016/j.abb.2004.08.003.
[15]
彭玉帅, 王如峰, 张陆军. 花青素生物合成的关键酶及其调控因子[J]. 中草药, 2014, 45(1):131-136.doi:10.7501/j.issn.0253-2670.2014.1.025.
Peng Y S, Wang R F, Zhang L J. Key enzymes and their regulatory factors involved in biosynthesis of anthocyanins[J]. Chinese Traditional and Herbal Drugs, 2014, 45(1):131-136.
[16]
鞠志刚, 蒋梦星, 王文斌, 缪艳燕, 杨芳芳, 陈晓兰. 苗药艾纳香花青素还原酶基因的克隆及其生物信息学分析[J]. 分子植物育种, 2018, 16(22):7270-7274.doi:10.13271/j.mpb.016.007270.
Ju Z G, Jiang M X, Wang W B, Miu Y Y, Yang F F, Chen X L. Cloning and bioinformatics analysis of ANR gene in Blumea balsamifera[J]. Molecular Plant Breeding, 2018, 16(22):7270-7274.
[17]
Zhu Y, Wang H Y, Peng Q Z, Tang Y T, Xia G X, Wu J H, Xie D Y. Functional characterization of an anthocyanidin reductase gene from the fibers of upland cotton(Gossypium hirsutum)[J]. Planta, 2015, 241(5):1075-1089.doi:10.1007/s00425-014-2238-4.
[18]
宋杨, 刘红弟, 王海波, 张红军, 刘凤之. 越橘原花青素合成相关基因VcLARVcANR的克隆和功能鉴定[J]. 江苏农业学报, 2019, 35(3):682-688.doi:10.3969/j.issn.1000-4440.2019.03.025.
Song Y, Liu H D, Wang H B, Zhang H J, Liu F Z. Molecular cloning and functional identification of proanthocyanidin synthesis related genes VcLAR and VcANR of blueberry[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(3):682-688.
[19]
孙威, 申欢, 陈婷, 彭贵, 潘蓉蓉, 鞠志刚. 日本蛇根草花青素还原酶基因的克隆及其生物信息学分析[J]. 基因组学与应用生物学, 2019, 38(1):233-238.doi:10.13417/j.gab.038.000233.
Sun W, Shen H, Chen T, Peng G, Pan R R, Ju Z G. Cloning and bioinformatics analysis of ANR gene in Ophiorrhiza japonica[J]. Genomics and Applied Biology, 2019, 38(1):233-238.
[20]
隋娟娟, 杨京霞, 胡新, 董新月, 舒生, 姬云涛. 香椿TsANR基因的克隆及在温度胁迫下的表达分析[J]. 阜阳师范大学学报(自然科学版),2021, 38(1):57-61.doi:10.14096/j.cnki.cn34-1069/n/2096-9341(2021)01-0057-05.
Sui J J, Yang J X, Hu X, Dong X Y, Shu S, Ji Y T. Cloning and expression analysis of TsANR gene under temperature stress in Toona sinensis[J]. Journal of Fuyang Normal University (Natural Science), 2021, 38(1):57-61.
[21]
任超翔, 吴沂芸, 唐小慧, 胡静, 陈江, 吴清华, 裴瑾. 红花的起源与产地变迁[J]. 中国中药杂志, 2017, 42(11):2219-2222.doi:10.19540/j.cnki.cjcmm.2017.0101.
Ren C X, Wu Y Y, Tang X H, Hu J, Chen J, Wu Q H, Pei J. Safflower's origin and changes of producing areas[J]. China Journal of Chinese Materia Medica, 2017, 42(11):2219-2222.
[22]
郭丽芬, 张跃, 胡尊红, 胡学礼, 高梅, 王沛琦, 杨谨, 代梦媛, 李文昌, 刘旭云. 云南红花地方种质资源品质特性与农艺性状的聚类分析及评价[J]. 华北农学报, 2018, 33(S1):22-28.doi:10.7668/hbnxb.2018.S1.004.
Guo L F, Zhang Y, Hu Z H, Hu X L, Gao M, Wang P Q, Yang J, Dai M Y, Li W C, Liu X Y. Cluster analysis and evaluation of quality characteristics and agronomic traits of local germplasm resources of safflower in Yunnan[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(S1):22-28.
[23]
Li R P, Guo M L, Zhang G, Xu X F, Li Q. Nicotiflorin reduces cerebral ischemic damage and upregulates endothelial nitric oxide synthase in primarily cultured rat cerebral blood vessel endothelial cells[J]. Journal of Ethnopharmacology, 2006, 107(1):143-150.doi:10.1016/j.jep.2006.04.024.
[24]
Tu Y H, Xue Y R, Guo D D, Sun L N, Guo M L. Carthami flos:A review of its ethnopharmacology,pharmacology and clinical applications[J]. Revista Brasileira De Farmacognosia, 2015, 25(5):553-566.doi:10.1016/j.bjp.2015.06.001.
[25]
Si W, Yang W H, Guo D D, Wu J, Zhang J, Qiu S, Yao C, Cui Y, Wu W. Selective ion monitoring of quinochalcone C-glycoside markers for the simultaneous identification of Carthamus tinctorius L.in eleven Chinese patent medicines by UHPLC/QTOF MS[J]. Journal of Pharmaceutical and Biomedical Analysis, 2016, 117:510-521.doi:10.1016/j.jpba.2015.09.025.
[26]
Lu J X, Zhang C X, Hu Y, Zhang M H, Wang Y N, Qian Y X, Yang J, Yang W Z, Jiang M M, Guo D A. Application of multiple chemical and biological approaches for quality assessment of Carthamus tinctorius L.(safflower)by determining both the primary and secondary metabolites[J]. Phytomedicine, 2019, 58:152826.doi:10.1016/j.phymed.2019.152826.
[27]
鲁丹丹, 谭政委, 李磊, 余永亮, 许兰杰, 杨红旗, 董薇, 梁慧珍. 红花花青素还原酶基因ANR的克隆及表达分析[J]. 核农学报, 2022, 36(3):517-526.doi:10.11869/j.issn.100-8551.2022.03.0517.
Lu D D, Tan Z W, Li L, Yu Y L, Xu L J, Yang H Q, Dong W, Liang H Z. Cloning and expression analysis of anthocyanidin reductase gene ANR in Carthamus tinctorius L.[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(3):517-526.
[28]
Lerner M R, Boyle J A, Mount S M, Wolin S L, Steitz J A. Are snRNPs involved in splicing?[J]. Nature, 1980, 283(5743):220-224.doi:10.1038/283220a0.
[29]
Han Y P, Vimolmangkang S, Soria-Guerra R E, Korban S S. Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers,leading to loss of anthocyanin[J]. Journal of Experimental Botany, 2012, 63(7):2437-2447.doi:10.1093/jxb/err415.
[30]
王华, 李茂福, 杨媛, 金万梅. 果实花青素生物合成分子机制研究进展[J]. 植物生理学报, 2015, 51(1):29-43.doi:10.13592/j.cnki.ppj.2014.0321.
Wang H, Li M F, Yang Y, Jin W M. Recent advances on the molecular mechanisms of anthocyanin synthesis in fruits[J]. Plant Physiology Journal, 2015, 51(1):29-43.
[31]
陈俊洁, 梅松, 胡彦如. 脱落酸激素诱导拟南芥幼苗中花青素的合成[J]. 广西植物, 2020, 40(8):1169-1180.doi:10.11931/guihaia.gxzw201902021.
Chen J J, Mei S, Hu Y R. Abscisic acid induces anthocyanin synthesis in Arabidopsis thaliana seedlings[J]. Guihaia, 2020, 40(8):1169-1180.
[32]
Shen X J, Zhao K, Liu L L, Zhang K C, Yuan H Z, Liao X, Wang Q, Guo X W, Li F, Li T H. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv.Hong Deng(Prunus avium L.)[J]. Plant and Cell Physiology, 2014, 55(5):862-880.doi:10.1093/pcp/pcu013.
[33]
Weiss D, van der Luit A, Knegt E, Vermeer E, Mol J, Kooter J M. Identification of endogenous gibberellins in petunia flowers(induction of anthocyanin biosynthetic gene expression and the antagonistic effect of abscisic acid)[J]. Plant Physiology, 1995, 107(3):695-702.doi:10.1104/pp.107.3.695.
[34]
王丽, 王曦烨, 王可可, 袁园园, 王林嵩. 外源赤霉素对心里美萝卜幼苗花青素的影响[J]. 中国生物化学与分子生物学报, 2016, 32(3):326-331.doi:10.13865/j.cnki.cjbmb.2016.03.13.
Wang L, Wang X Y, Wang K K, Yuan Y Y, Wang L S. Effect of exogenous gibberellic acid on anthocyanidin in Raphanus sativus seedlings[J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(3):326-331.
[35]
El-Kereamy A, Chervin C, Roustan J P, Cheynier V, Souquet J M, Moutounet M, Raynal J, Ford C, Latché A, Pech J C, Bouzayen M. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries[J]. Physiologia Plantarum, 2003, 119(2):175-182.doi:10.1034/j.1399-3054.2003.00165.x.
[36]
高树林, 张超, 杜丹妮, 刘爱青, 董丽. 乙烯和葡萄糖处理对洛阳红牡丹切花花色和花青素苷合成的影响[J]. 园艺学报, 2015, 42(7):1356-1366.doi:10.16420/j.issn.0513-353x.2014-1000.
Gao S L, Zhang C, Du D N, Liu A Q, Dong L. Effect of glucose and ethylene on flower color and anthocyanin biosynthesis in tree peony Luoyanghong cut flower[J]. Acta Horticulturae Sinica, 2015, 42(7):1356-1366.

基金

河南省中央引导地方科技发展专项自由探索类项目(YDZX20214100001804)
河南省农科院新兴学科发展专项(2021XK03)
河南省农科院新兴学科发展专项(2022XK03)
河南省科技攻关项目(222102110379)
河南省科技攻关项目(222102110466)
河南省农科院自主创新专项基金(2022ZC64)

15

Accesses

0

Citation

Detail

段落导航
相关文章

/