玉米茎腐病生防菌哈茨木霉CCTH-2鉴定及其生物学特性
Identification of Trichoderma harzianum CCTH-2 and Its Biological Characteristics,a Biocontrol Fungi Against Corn Stalk Rot
玉米茎腐病(CSR)对玉米产量和品质危害巨大。为尽快展开玉米茎腐病的有效防治,将吉林省玉米茎腐病的优势致病菌禾谷镰孢,与14株从玉米根际土壤中分离得到木霉菌株分别进行平板对峙试验。观察木霉对禾谷镰孢的抑制作用,筛选得到抑制效果较好的菌株CCTH-2和CCTH-6。复筛通过这2株木霉的发酵液、易挥发性代谢产物、难挥发性代谢产物对禾谷镰孢的抑制效果和对其他病原真菌的抑制效果,最终筛选到一株具有良好防效的木霉菌株CCTH-2;CCTH-2经过形态学和分子生物学鉴定显示,为哈茨木霉,并对其生物学特性进行初步研究。结果表明,平板对峙培养条件下CCTH-2对禾谷镰孢抑制率为82.83%,其发酵液、易挥发代谢物和难挥发代谢物对禾谷镰孢的抑制率为36.56%,46.75%,32.48%,具有显著抑制效果。生物学特性试验显示,CCTH-2菌落生长和产孢的最适培养基为PDA,最适温度为25 ℃,最适光照条件为全光照,外源添加Fe2+有利于CCTH-2的生长发育,并且CCTH-2具有一定的适应环境酸碱度和盐含量变化的能力。因此,可以确认哈茨木霉CCTH-2是一株有着良好防效且潜力巨大的生防菌。
Corn stalk rot is harmful to yield and quality of corn,so effective control of corn stalk rot should be carried out as soon as possible.For Fusarium graminearum,the dominant strains of corn stalk rot in Jilin Province,and fourteen Trichoderma sp.strains were isolated from corn rhizosphere soil were subjected to plate confrontation experiment respectively.By observing the inhibitory effect of Trichoderma sp.strains on Fusarium graminearum,the strains of CCTH-2 and CCTH-6 with better inhibitory effect could be screed.The inhibition of Fusarium graminearum by fermentation broth,volatile metabolites and non-volatile metabolites of these two Trichoderma sp.strains were screened again,and inhibitory effect of these two Trichoderma sp.strains on other pathogens.Finally,Trichoderma sp.strain CCTH-2 with good control effect was screened by comprehensive analysis.Morphological and molecular identification showed Trichoderma harzianum,and its biological characteristics were preliminarily studied.The results showed that the inhibition rate of CCTH-2 against Fusarium graminearum was 82.83% under culture conditions of slab face-off method and the fermentation broth,volatile metabolites and non-volatile metabolites of CCTH-2 against Fusarium graminearum was 36.56%,46.75%,32.48%,showed significant inhibition effect.The biological characteristics test showed that PDA was the optimal medium for the growth and sporulation of CCTH-2 colonies,the optimal temperature was 25 ℃,the optimal illunination condition was total illumination,exogenous addition of Fe2+ was beneficial to the growth and development of CCTH-2,and CCTH-2 had the ability to adapt to the changes of pH value and salt contene.Therefore,it could be confirmed that Trichoderma harzianum CCTH-2 was a biocontrol bacterium with good control effect and great potential,providing information guarantee and theoretical basis for the subsequent development and utilization of biocontrol bacteria of corn stalk rot.
玉米茎腐病 / 禾谷镰孢 / 哈茨木霉CCTH-2 / 生防菌株 {{custom_keyword}} /
Corn stalk rot / Fusarium graminearum / Trichoderma harzianum CCTH-2 / Biological characteristics {{custom_keyword}} /
表1 木霉菌对禾谷镰孢的抑菌率Tab.1 Inhibitory rate of Trichoderma spp. to Fusarium graminearum |
菌株 Strains | 禾谷镰孢 F. graminearum | |
---|---|---|
菌落半径/cm The radius of colony | 抑制率/% Inhibation rate | |
CCTH-1 | 1.10 | 72.58±0.60bc |
CCTH-2 | 0.69 | 82.83±0.25a |
CCTH-3 | 1.24 | 68.92±0.49c |
CCTH-4 | 1.36 | 66.08±0.56d |
CCTH-5 | 1.09 | 72.75±0.31bc |
CCTH-6 | 0.70 | 82.42±0.25a |
CCTH-7 | 0.95 | 76.33±0.30b |
CCTH-8 | 1.23 | 69.33±0.18c |
CCTH-9 | 1.21 | 69.67±0.25c |
CCTH-10 | 1.11 | 71.83±0.25bc |
CCTH-11 | 1.11 | 72.33±0.64bc |
CCTH-12 | 1.14 | 71.42±0.27bc |
CCTH-13 | 1.16 | 71.00±0.42c |
CCTH-14 | 1.07 | 73.83±0.45b |
CK | 4.00 | - |
注:表中的数值为平均值±标准差,数字后的小写字母代表0.05 显著性水平。 | |
Note:The data in the table are mean±s,and the small letters followed by numerical values stand for significant difference at the 0.05 level.The same as |
图1 禾谷镰孢菌落生长形态图(培养基正反两面)A.木霉菌CCTH-2、CCTH-6的发酵液对禾谷镰孢的抑制作用(3 d);B.木霉菌CCTH-2、CCTH-6的易挥发性代谢物对禾谷镰孢的抑制作用(5 d);C.木霉菌CCTH-2、CCTH-6的难挥发性代谢物对禾谷镰孢的抑制作用(36 h)。Fig.1 Colony growth morphology diagram of Fusarium graminearum(Both sides of culture medium) A.Inhibition activities of fermentation broth of Trichoderma sp. CCTH-2 and CCTH-6 species against Fusarium graminearum(3 d);.B.Inhibition activities of volatile metabolites of Trichoderma sp. CCTH-2 and CCTH-6 species against Fusarium graminearum(5 d);C.Inhibition activities of non-volatile metabolites of Trichoderma sp. CCTH-2 and CCTH-6 species against Fusarium graminearum(36 h). |
表2 木霉菌CCTH-2和CCTH-6对禾谷镰孢的抑制作用Tab.2 Inhibitory activities of Trichoderma sp. CCTH-2 and CCTH-6 species against Fusarium graminearum |
菌株 Strains | 发酵液 Fermentation broth | 易挥发性代谢产物 Volatile metabolites | 难挥发性代谢产物 Non-volatile metabolites | |||
---|---|---|---|---|---|---|
菌落半径/cm The radius of colony | 抑制率/% Inhibition rate | 菌落半径/cm The radius of colony | 抑制率/% Inhibition rate | 菌落半径/cm The radius of colony | 抑制率/% Inhibition rate | |
CCTH-2 | 2.03 | 36.56±1.21a | 2.13 | 46.75±0.18a | 1.06 | 32.48±1.59b |
CCTH-6 | 2.18 | 31.87±0.92b | 2.28 | 43.00±0.68b | 0.91 | 42.04±1.59a |
CK | 3.20 | - | 4.00 | - | 1.57 | - |
表3 木霉菌CCTH-2和CCTH-6对其他病原菌的抑制作用Tab.3 Inhibitory activities of Trichoderma sp.CCTH-2 and CCTH-6 species against other pathogenic fungi |
菌株 Strains | 对照组 Control group | 木霉菌CCTH-2 Trichoderma sp. CCTH-2 | 木霉菌CCTH-6 Trichoderma sp. CCTH-6 | ||
---|---|---|---|---|---|
菌落半径/cm The radius of colony | 菌落半径/cm The radius of colony | 抑制率/% Inhibition rate | 菌落半径/cm The radius of colony | 抑制率/% Inhibition rate | |
立枯丝核菌R.solani | 7.50 | 2.27 | 69.73±0.86ab | 2.63 | 64.93±0.77b |
玉米大斑病菌S. turcica | 3.45 | 1.05 | 69.57±0.80b | 1.11 | 67.83±0.55b |
玉米小斑病菌C. heterostrophus | 3.42 | 1.17 | 65.79±1.51b | 1.08 | 68.42±1.90b |
核盘菌S. sclerotiorum | 7.50 | 2.83 | 62.27±1.35b | 2.57 | 65.73±1.78b |
玉米灰斑病菌C. zeae-maydis | 7.50 | 1.40 | 81.33±2.26a | 1.46 | 80.53±0.93a |
灰葡萄孢B.cinerea | 6.07 | 1.31 | 78.42±1.87a | 1.36 | 77.59±1.32a |
图5 不同的培养基上哈茨木霉CCTH-2的菌落形态Fig.5 Colony morphology of Trichoderma harzianum CCTH-2 on different media |
图7 不同的温度条件下哈茨木霉CCTH-2的菌落形态Fig.7 Colony morphology of Trichoderma harzianum CCTH-2 under different temperature conditions |
图9 不同的光照类型下哈茨木霉CCTH-2的菌落形态Fig.9 Colony morphology of Trichoderma harzianum CCTH-2 under different light types |
图11 不同微量元素下哈茨木霉CCTH-2的菌落形态Fig.11 Colony morphology of Trichoderma harzianum CCTH-2 under different trace elements |
图13 不同pH值条件下哈茨木霉CCTH-2的菌落形态Fig.13 Colony morphology of Trichoderma harzianum CCTH-2 under different pH conditions |
图15 不同的含盐量条件下哈茨木霉CCTH-2的菌落形态Fig.15 Colony morphology of T.harzianum CCTH-2 under different salt content conditions |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
王超. 玉米抗禾谷镰刀菌茎腐病主效QTL基因ZmCCT的克隆、功能分析及表观调控研究[D]. 北京: 中国农业大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
王金萍, 刘永伟, 孙果忠, 王海波. 抗茎腐病分子标记在159份玉米自交系中的验证及实用性评价[J]. 植物遗传资源学报, 2017, 18(4):754-762. doi:10.13430/j.cnki.jpgr.2017.04.019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
岳辉, 陈晓旭, 王作英, 陈丽, 鲁俊田, 杨海龙, 付俊. 辽宁省抗玉米茎腐病骨干自交系的筛选与评价[J]. 农业科技通讯, 2018(10):142-144. doi:10.3969/j.issn.1000-6400.2018.10.050.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
管贝贝. 对农药问题的环境伦理学思考[D]. 南京: 南京林业大学, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
马金慧, 杨克泽, 任宝仓. 不同药剂防治玉米茎基腐病田间药效试验[J]. 天津农林科技, 2017(1):4-5, 11. doi:10.16013/j.cnki.1002-0659.2017.0002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
段海明, 余利, 黄伟东, 余海兵. 不同温度下6种化学杀菌剂对玉米茎腐病菌的抑制活性及与生防菌发酵上清液的混配[J]. 江苏农业学报, 2018, 34(1):41-49. doi:10.3969/j.issn.1000-4440.2018.01.006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
曹晶晶. 解淀粉芽孢杆菌对小麦黄花叶病的生物防治研究[D]. 杨凌: 西北农林科技大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
涂广平. 木霉菌颗粒剂TCF和种衣剂XDS防治玉米几种土传病害的应用研究[D]. 沈阳: 沈阳农业大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
张广志, 杨合同, 张新建, 扈进冬, 郭凯, 黄玉杰, 李纪顺. 木霉现有种类名录[J]. 菌物学报, 2014, 33(6):1210-1230. doi:10.13346/j.mycosystema.140183.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
王永阳, 杜佳, 高克祥. 苦瓜枯萎病生防木霉的筛选鉴定及其定殖的qPCR检测[J]. 山东农业科学, 2018, 50(8):110-115. doi:10.14083/j.issn.1001-4942.2018.08.023.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
朱洪江. 哈茨木霉TMN-1菌株诱导烟草抗青枯病的活性及机理研究[D]. 重庆: 西南大学, 2020.
doi:10.27684/d.cnki.gxndx.2020.003501. Zhu H J.Study on the activity and mechanism of Trichoderma harzianum TMN-1 inducing tobacco bacterial wilt resistance[D]. Chongqing: Southwest University, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
杨合同. 木霉分类与鉴定[M]. 北京: 中国大地出版社, 2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
李琳. 棘孢木霉菌的分离及其生防作用的评价与应用[D]. 长春: 吉林大学, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
王斌,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |