Collection
Smart agriculture
Sort by Default Latest Most read  
Please wait a minute...
  • Select all
    |
  • Overview Article
    LIU Youfu, XIAO Deqin, ZHOU Jiaxin, BIAN Zhiyi, ZHAO Shengqiu, HUANG Yigui, WANG Wence
    Smart Agriculture. 2023, 5(1): 99-110. https://doi.org/10.12133/j.smartag.SA202205007

    Waterfowl farming in China is developing rapidly in the direction of large-scale, standardization and intelligence. The research and application of intelligent farming equipment and information technology is the key to promote the healthy and sustainable development of waterfowl farming, which is important to improve the output efficiency of waterfowl farming, reduce the reliance on labor in the production process, fit the development concept of green and environmental protection and achieve high-quality transformational development. In this paper, the latest research and inventions of intelligent waterfowl equipment, waterfowl shed environment intelligent control technology and intelligent waterfowl feeding, drinking water, dosing and disinfection and automatic manure treatment equipment were introduced. At present, compared to pigs, chickens and cattle, the intelligent equipment of waterfowl are still relatively backward. Most waterfowl houses are equipped with chicken equipment directly, lacking improvements for waterfowl. Moreover, the linkage between the equipment is poor and not integrated with the breeding mode and shed structure of waterfowl, resulting in low utilization. Therefore, there is a need to develop and improve equipment for the physiological growth characteristics of waterfowl from the perspective of their breeding welfare. In addition, the latest research advances in the application of real-time production information collection and intelligent management technologies were present. The information collection technologies included visual imaging technology, sound capture systems, and wearable sensors were present. Since the researches of ducks and geese is few, the research of poultry field, which can provide a reference for the waterfowl were also summarized. The research of information perception and processing of waterfowl is currently in its initial stage. Information collection techniques need to be further tailored to the physiological growth characteristics of waterfowl, and better deep learning models need to be established. The waterfowl management platform, taking the intelligent management platform developed by South China Agricultural University as an example were also described. Finally, the intelligent application of the waterfowl industry was pointed out, and the future trends of intelligent farming with the development of mechanized and intelligent equipment for waterfowl in China to improve the recommendations were analyzed. The current waterfowl farming is in urgent need of intelligent equipment reform and upgrading of the industry for support. In the future, intelligent equipment for waterfowl, information perception methods and control platforms are in urgent to be developed. When upgrading the industry, it is necessary to develop a development strategy that fits the current waterfowl farming model in China.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    DUAN Luojia, YANG Fuzeng, YAN Bin, SHI shuaiqi, QIN jifeng
    Smart Agriculture. 2022, 4(3): 24-41. https://doi.org/10.12133/j.smartag.SA202206010

    As a pillar industry of economic development in the main apple-producing areas, apple industry has made important contributions to the increase of local farmers' income. With the transformation and upgrading of apple industry, the mechanization and intelligence level would be directly related to economic benefits. To promote the research of apple production intelligent technology and the development of intelligent equipment, in this paper, the current level of mechanization in each step of apple production was first introduced. Then, the main characteristics of the main apple orchard machinery, such as power chassis, weeding machinery, and harvesting equipment, were demonstrated. The application progress of automatic leveling and control, automatic navigation, automatic obstacle avoidance, weed identification, weed removal, apple identification, apple positioning, apple separation, and other technologies in intelligent power chassis, intelligent weeding machines, and apple harvesting robots, were summarized. The basic principles and characteristics of the above three key technologies of intelligent equipment were expounded in combination with different application environments. Intelligent control is the key technology for the intelligentization of orchard power chassis. The post of chassis adaptive control technology and autonomous navigation technology were discussed. In addition, a chassis intelligent perception and intelligent decision-making system should be established. Orchard chassis safe, accurate, efficient, and stable driving and operation is the future development trend of orchard intelligent chassis. The lack of robust weed sensing technology is the main limitation to the commercial development of a robotic weed control system. To improve the level of weed detection and weeding, machine vision and multi-sensor fusion methods have been proposed to solve the practical problems, such as illumination, overlapping leaves, occlusion, and classifier or network structure optimization. Robotic apple harvesting has proven to be a highly challenging task due to environmental complexities, sensor reliability, and robot stability. To improve the accuracy and efficiency of harvest mechanization applications in apples, apple quick identification under complex scenes, apple picking path planning, and materials and structure of manipulator for apple picking must all be optimized accordingly. Finally, the challenges of intelligent equipment technologies in apple production were analyzed, and the developing suggestions were put forward. This research can provide references and ideas for the advancement of intelligent technology research in apple production and the research and development of intelligent equipment.

  • CHEN Feng, SUN Chuanheng, XING Bin, LUO Na, LIU Haishen
    Smart Agriculture. 2022, 4(4): 126-137. https://doi.org/10.12133/j.smartag.SA202206006

    As an emerging concept, metaverse has attracted extensive attention from industry, academia and scientific research field. The combination of agriculture and metaverse will greatly promote the development of agricultural informatization and agricultural intelligence, provide new impetus for the transformation and upgrading of agricultural intelligence. Firstly, to expound feasibility of the application research of metaverse in agriculture, the basic principle and key technologies of agriculture metaverse were briefly described, such as blockchain, non-fungible token, 5G/6G, artificial intelligence, Internet of Things, 3D reconstruction, cloud computing, edge computing, augmented reality, virtual reality, mixed reality, brain computer interface, digital twins and parallel system. Then, the main scenarios of three agricultural applications of metaverse in the fields of virtual farm, agricultural teaching system and agricultural product traceability system were discussed. Among them, virtual farm is one of the most important applications of agricultural metaverse. Agricultural metaverse can help the growth of crops and the raising of livestock and poultry in the field of agricultural production, provide a three-dimensional and visual virtual leisure agricultural experience, provide virtual characters in the field of agricultural product promotion. The agricultural metaverse teaching system can provide virtual agricultural teaching similar to natural scenes, save training time and improve training efficiency by means of fragmentation. Traceability of agricultural products can let consumers know the production information of agricultural products and feel more confident about enterprises and products. Finally, the challenges in the development of agricultural metaverse were summarized in the aspects of difficulties in establishing agricultural metaverse system, weak communication foundation of agricultural metaverse, immature agricultural metaverse hardware equipment and uncertain agricultural meta universe operation, and the future development directions of agricultural metaverse were prospected. In the future, researches on the application of metaverse, agricultural growth mechanism, and low power wireless communication technologies are suggested to be carried out. A rural broadband network covering households can be established. The industrialization application of agricultural meta universe can be promoted. This review can provide theoretical references and technical supports for the development of metaverse in the field of agriculture.

  • Topic--Smart Farming of Field Crops
    LI Li, LI Minzan, LIU Gang, ZHANG Man, WANG Maohua
    Smart Agriculture. 2022, 4(4): 26-34. https://doi.org/10.12133/j.smartag.SA202207003

    Smart farming for field crops is a significant part of the smart agriculture. It aims at crop production, integrating modern sensing technology, new generation mobile communication technology, computer and network technology, Internet of Things(IoT), big data, cloud computing, blockchain and expert wisdom and knowledge. Deeply integrated application of biotechnology, engineering technology, information technology and management technology, it realizes accurate perception, quantitative decision-making, intelligent operation and intelligent service in the process of crop production, to significantly improve land output, resource utilization and labor productivity, comprehensively improves the quality, and promotes efficiency of agricultural products. In order to promote the sustainable development of the smart farming, through the analysis of the development process of smart agriculture, the overall objectives and key tasks of the development strategy were clarified, the key technologies in smart farming were condensed. Analysis and breakthrough of smart farming key technologies were crucial to the industrial development strategy. The main problems of the smart farming for field crops include: the lack of in-situ accurate measurement technology and special agricultural sensors, the large difference between crop model and actual production, the instantaneity, reliability, universality, and stability of the information transmission technologies, and the combination of intelligent agricultural equipment with agronomy. Based on the above analysis, five primary technologies and eighteen corresponding secondary technologies of smart farming for field crops were proposed, including: sensing technologies of environmental and biological information in field, agricultural IoT technologies and mobile internet, cloud computing and cloud service technologies in agriculture, big data analysis and decision-making technology in agriculture, and intelligent agricultural machinery and agricultural robots in fireld production. According to the characteristics of China's cropping region, the corresponding smart farming development strategies were proposed: large-scale smart production development zone in the Northeast region and Inner Mongolia region, smart urban agriculture and water-saving agriculture development zone in the region of Beijing, Tianjin, Hebei and Shandong, large-scale smart farming of cotton and smart dry farming green development comprehensive test zone in the Northwest arid region, smart farming of rice comprehensive development test zone in the Southeast coast region, and characteristic smart farming development zone in the Southwest mountain region. Finally, the suggestions were given from the perspective of infrastructure, key technology, talent and policy.

  • Topic--Smart Farming of Field Crops
    LIU Xiaohang, ZHANG Zhao, LIU Jiaying, ZHANG Man, LI Han, FLORES Paulo, HAN Xiongzhe
    Smart Agriculture. 2022, 4(4): 49-60. https://doi.org/10.12133/j.smartag.SA202207004

    Machine vision has been increasingly used for agricultural sensing tasks. The detection method based on deep learning for infield corn kernels can improve the detection accuracy. In order to obtain the number of lost corn kernels quickly and accurately after the corn harvest, and evaluate the corn harvest combine performance on grain loss, the method of directly using deep learning technology to count corn kernels in the field was developed and evaluated. Firstly, an RGB camera was used to collect image with different backgrounds and illuminations, and the datasets were generated. Secondly, different target detection networks for kernel recognition were constructed, including Mask R-CNN, EfficientDet-D5, YOLOv5-L and YOLOX-L, and the collected 420 effective images were used to train, verify and test each model. The number of images in train, verify and test datasets were 200, 40 and 180, respectively. Finally, the counting performances of different models were evaluated and compared according to the recognition results of test set images. The experimental results showed that among the four models, YOLOv5-L had overall the best performance, and could reliably identify corn kernels under different scenes and light conditions. The average precision (AP) value of the model for the image detection of the test set was 78.3%, and the size of the model was 89.3 MB. The correct rate of kernel count detection in four scenes of non-occlusion, surface mid-level-occlusion, surface severe-occlusion and aggregation were 98.2%, 95.5%, 76.1% and 83.3%, respectively, and F1 values were 94.7%, 93.8%, 82.8% and 87%, respectively. The overall detection correct rate and F1 value of the test set were 90.7% and 91.1%, respectively. The frame rate was 55.55 f/s, and the detection and counting performance were better than Mask R-CNN, EfficientDet-D5 and YOLOX-L networks. The detection accuracy was improved by about 5% compared with the second best performance of Mask R-CNN. With good precision, high throughput, and proven generalization, YOLOv5-L can realize real-time monitoring of corn harvest loss in practical operation.

  • Overview Article
    HU Ruifa, LIU Wanjiawen
    Smart Agriculture. 2022, 4(4): 138-143. https://doi.org/10.12133/j.smartag.SA202205002

    This paper described the concept and basic satisfaction of scientific and technological revolution, defines the endogenous and exogenous agricultural disruptive technology. The revolution of agricultural science and technology refers to the process in which the key disruptive core technology innovation applied to agricultural production drives a series of technological innovations adopted in production. Endogenous disruptive technology in agriculture refers to technology indicators that can fundamentally change the original technology, such as productivity improvement, overturn the economic or social necessity of the adoption of the original technology, and completely replace the original technology. Particularly the paper puts forwards the concept of the transboundary technology and demonstrates its endogenous application and impacts on the development of agricultural industry. The transboundary technology for exogenous application refers to the technology whose original invention and innovation are applied in non-agricultural fields and has nothing to do with agricultural industry. Focusing on smart agriculture and the typical transboundary technology, the paper analyzed the characteristics of the smart agriculture, discussed its impacts on the traditional agricultural production and rural transformation. Smart agriculture technology will be the disruptive core technology to promote a new round of technological and industrial revolution and rural transformation. It will fundamentally change the production mode of traditional agriculture, realize factory production and promote the revolutionary transformation of rural areas. The production and application of smart agricultural technology in China has shown good economic and social benefits and great potential for production and application. However, the application of intelligent agricultural technology based on artificial intelligence technology is still in the exploratory stage. As an agricultural application of transboundary technology, the smart agricultural technology with intelligent sensing technology as the core is not dominated by agricultural scientists like agricultural machinery technology revolution, chemical technology revolution and green revolution technology. At present, the application smart agriculture technology in China is only in its infancy. Hence, policy recommendations of strengthening key disruptive technology development, reforming agricultural higher education system, promoting the agricultural industry development of the transboundary technology, and pushing the application of smart agriculture technology to be implemented in high standard farmland and large-scale farms of agricultural production, etc., were proposed to promote the development of smart agriculture.

  • Topic--Smart Farming of Field Crops
    FU Hongyu, WANG Wei, LIAO Ao, YUE Yunkai, XU Mingzhi, WANG Ziwei, CHEN Jianfu, SHE Wei, CUI Guoxian
    Smart Agriculture. 2022, 4(4): 74-83. https://doi.org/10.12133/j.smartag.SA202209001

    Ramie is an important fiber crop. Due to the shortage of land resources and the promotion of excellent varieties, the genetic variation and diversity of ramie decreased, which increased the need for investigation and protection of the ramie germplasm resources diversity. The crop phenotype measurement method based on UAV remote sensing can conduct frequent, rapid, non-destructive and accurate monitoring of different genotypes, which can fulfill the investigation of crop germplasm resources and screen specific and high-quality varieties. In order to realize efficient comprehensive evaluation of ramie germplasm phenotype and assist in screening of dominant ramie varieties, a method for monitoring and screening ramie germplasm phenotype was proposed based on UAV remote sensing images. Firstly, based on UAV remote sensing images, the digital surface model (DSM) and orthophoto of the test area were generated by Pix4dmapper. Then, the key phenotypic parameters (plant height, plant number, leaf area index, leaf chlorophyll content and water content) of ramie germplasm resources were estimated. The subtraction method was used to extract ramie plant height based on DSM, while the target detection algorithm was applied to extract ramie plant number based on orthographic images, and four machine learning methods were used to estimate the leaf area index (LAI), leaf chlorophyll content (SPAD value) and water content. Finally, according to the extracted remote sensing phenotypic parameters, the genetic diversity of ramie germplasm was analyzed by using variability analysis and principal component analysis. The results showed that: (1) The ramie phenotype estimation based on UAV remote sensing was effective, with the fitting accuracy of plant height 0.93, and the root mean square error (RMSE) 5.654 cm. The fitting indexes of SPAD value, water content and LAI were 0.66, 0.79 and 0.74, respectively, and RMSE were 2.03, 2.21 and 0.63, respectively; (2) The remote sensing phenotypes of ramie germplasm were significantly different, as the coefficients of variation of LAI, plant height and plant number reached 20.82%, 24.61% and 35.48%, respectively; (3) Principal component analysis was used to cluster the remote sensing phenotypes into factor 1 (plant height and LAI) and factor 2 (LAI and SPAD value), factor 1 can be used to evaluate the structural characteristics of ramie germplasm resources, and factor 2 can be used as the screening index of high-light efficiency ramie resources. This study could provide references for crop germplasm phenotypic monitoring and breeding correlation analysis.

  • Information Processing and Decision Making
    YE Wenshuai, KANG Xi, HE Zhijiang, LI Mengfei, LIU Gang
    Smart Agriculture. 2022, 4(4): 144-155. https://doi.org/10.12133/j.smartag.SA202210001

    Beef cattle in the farm are active, which leads the collection of posture of the beef cattle changeable, so it is difficult to automatically measure the body size of the beef cattle. Aiming at the above problems, an automatic measurement method for beef cattle's body size under multi-pose was proposed by analyzing the skeleton features of beef cattle head and the edge contour features of beef cattle images. Firstly, the consumer-grade depth camera Azure Kinect DK was used to collect the top-view depth video data directly above the beef cattle and the video data were divided into frames to obtain the original depth image. Secondly, the original depth image was processed by shadow interpolation, normalization, image segmentation and connected domain to remove the complex background and obtain the target image containing only beef cattle. Thirdly, the Zhang-Suen algorithm was used to extract the beef cattle skeleton of the target image, and calculated the intersection points and endpoints of the skeleton, so as to analyze the characteristics of the beef cattle head to determine the head removal point, and to remove the beef cattle head information from the image. Finally, the curvature curve of the beef cattle profile was obtained by the improved U-chord curvature method. The body measurement points were determined according to the curvature value and converted into three-dimensional spaces to calculate the body size parameters. In this paper, the postures of beef cattle, which were analyzed by a large amount of depth image data, were divided into left crooked, right crooked, correct posture, head down and head up, respectively. The test results showed that the head removal method proposed based on the skeleton in multiple postures hads head removel success rate higher than 92% in the five postures. Using the body measurement point extraction method based on the improved U-chord curvature proposed, the average absolute error of body length measurement was 2.73 cm, the average absolute error of body height measurement was 2.07 cm, and the average absolute error of belly width measurement was 1.47 cm. The method provides a better way to achieve the automatic measurement of beef cattle body size in multiple poses.

  • Topic--Smart Farming of Field Crops
    ZHUO Yue, DING Feng, YAN Haijun, XU Jing
    Smart Agriculture. 2022, 4(4): 35-48. https://doi.org/10.12133/j.smartag.SA202206004

    Dynamic monitoring and quantitative estimation of forage crop growth are of great importance to the large-scale production of forage crop. UAV remote sensing has the advantages of high resolution, strong flexibility and low cost. In recent years, it has developed rapidly in the field of forage crop growth monitoring. In order to clarify the development status of forage crop growth monitoring and find the development direction, first, methods of UAV crop remote sensing monitoring were briefly described from two aspects of data acquisition and processing. Second, three key technologies of forage crop including canopy information extraction, spectral feature optimization and forage biomass estimation were described. Then the development trend of related research in recent years was analyzed, and it was pointed out that the number of papers published on UAV remote sensing forage crop monitoring showed an overall trend of rapidly increasing. With the rapid development of computer information technology and remote sensing technology, the application potential of UAV in the field of forage crop monitoring has been fully explored. Then, the research progress of UAV remote sensing in forage crop growth monitoring was described in five parts according to sensor types, i.e., visible, multispectral, hyperspectral, thermal infrared and LiDAR, and the research of each type of sensor were summarized and reviewed, pointing out that the current researches of hyperspectral, thermal infrared and LiDAR sensors in forage crop monitoring were less than that of visible and multispectral sensors. Finally, the future development directions were clarified according to the key technical problems that have not been solved in the research and application of UAV remote sensing forage crop growth monitoring: (1) Build a multi-temporal growth monitoring model based on the characteristics of different growth stages and different growth years of forage crops, carry out UAV remote sensing monitoring of forage crops around representative research areas to further improve the scope of application of the model. (2) Establish a multi-source database of UAV remote sensing, and carry out integrated collaborative monitoring combined with satellite remote sensing data, historical yield, soil conductivity and other data. (3) Develop an intelligent and user-friendly UAV remote sensing data analysis system, and shorten the data processing time through 5G communication network and edge computing devices. This paper could provide relevant technical references and directional guidelines for researchers in the field of forage crops and further promote the application and development of precision agriculture technology.

  • ZHAO Ruixue, YANG Chenxue, ZHENG Jianhua, LI Jiao, WANG Jian
    Smart Agriculture. 2022, 4(4): 105-125. https://doi.org/10.12133/j.smartag.SA202207009

    The wide application of advanced information technologies such as big data, Internet of Things and artificial intelligence in agriculture has promoted the modernization of agriculture in rural areas and the development of smart agriculture. This trend has also led to the boost of demands for technology and knowledge from a large amount of agricultural business entities. Faced with problems such as dispersiveness of knowledges, hysteric knowledge update, inadequate agricultural information service and prominent contradiction between supply and demand of knowledge, the agricultural knowledge service has become an important engine for the transformation, upgrading and high-quality development of agriculture. To better facilitate the agriculture modernization in China, the research and application perspectives of agricultural knowledge services were summarized and analyzed. According to the whole life cycle of agricultural data, based on the whole agricultural industry chain, a systematic framework for the construction of agricultural intelligent knowledge service systems towards the requirement of agricultural business entities was proposed. Three layers of techniques in necessity were designed, ranging from AIoT-based agricultural situation perception to big data aggregation and governance, and from agricultural knowledge organization to computation/mining based on knowledge graph and then to multi-scenario-based agricultural intelligent knowledge service. A wide range of key technologies with comprehensive discussion on their applications in agricultural intelligent knowledge service were summarized, including the aerial and ground integrated Artificial Intelligence & Internet-of-Things (AIoT) full-dimensional of agricultural condition perception, multi-source heterogeneous agricultural big data aggregation/governance, knowledge modeling, knowledge extraction, knowledge fusion, knowledge reasoning, cross-media retrieval, intelligent question answering, personalized recommendation, decision support. At the end, the future development trends and countermeasures were discussed, from the aspects of agricultural data acquisition, model construction, knowledge organization, intelligent knowledge service technology and application promotion. It can be concluded that the agricultural intelligent knowledge service is the key to resolve the contradiction between supply and demand of agricultural knowledge service, can provide support in the realization of the advance from agricultural cross-media data analytics to knowledge reasoning, and promote the upgrade of agricultural knowledge service to be more personalized, more precise and more intelligent. Agricultural knowledge service is also an important support for agricultural science and technologies to be more self-reliance, modernized, and facilitates substantial development and upgrading of them in a more effective manner.

  • Topic--Smart Farming of Field Crops
    YIN Yanxin, MENG Zhijun, ZHAO Chunjiang, WANG Hao, WEN Changkai, CHEN Jingping, LI Liwei, DU Jingwei, WANG Pei, AN Xiaofei, SHANG Yehua, ZHANG Anqi, YAN Bingxin, WU Guangwei
    Smart Agriculture. 2022, 4(4): 1-25. https://doi.org/10.12133/j.smartag.SA202212005

    As one of the important way for constructing smart agriculture, unmanned farms are the most attractive in nowadays, and have been explored in many countries. Generally, data, knowledge and intelligent equipment are the core elements of unmanned farms. It deeply integrates modern information technologies such as the Internet of Things, big data, cloud computing, edge computing, and artificial intelligence with agriculture to realize agricultural production information perception, quantitative decision-making, intelligent control, precise input and personalized services. In the paper, the overall technical architecture of unmanned farms is introduced, and five kinds of key technologies of unmanned farms are proposed, which include information perception and intelligent decision-making technology, precision control technology and key equipment for agriculture, automatic driving technology in agriculture, unmanned operation agricultural equipment, management and remote controlling system for unmanned farms. Furthermore, the latest research progress of the above technologies both worldwide are analyzed. Based on which, critical scientific and technological issues to be solved for developing unmanned farms in China are proposed, include unstructured environment perception of farmland, automatic drive for agriculture machinery in complex and changeable farmland environment, autonomous task assignment and path planning of unmanned agricultural machinery, autonomous cooperative operation control of unmanned agricultural machinery group. Those technologies are challenging and absolutely, and would be the most competitive commanding height in the future. The maize unmanned farm constructed in the city of Gongzhuling, Jilin province, China, was also introduced in detail. The unmanned farms is mainly composed of information perception system, unmanned agricultural equipment, management and controlling system. The perception system obtains and provides the farmland information, maize growth, pest and disease information of the farm. The unmanned agricultural machineries could complete the whole process of the maize mechanization under unattended conditions. The management and controlling system includes the basic GIS, remote controlling subsystem, precision operation management subsystem and working display system for unmanned agricultural machineries. The application of the maize unmanned farm has improved maize production efficiency (the harvesting efficiency has been increased by 3-4 times) and reduced labors. Finally, the paper summarizes the important role of the unmanned farm technology were summarized in solving the problems such as reduction of labors, analyzes the opportunities and challenges of developing unmanned farms in China, and put forward the strategic goals and ideas of developing unmanned farm in China.

  • Information Processing and Decision Making
    XU Yulin, KANG Mengzhen, WANG Xiujuan, HUA Jing, WANG Haoyu, SHEN Zhen
    Smart Agriculture. 2022, 4(4): 156-163. https://doi.org/10.12133/j.smartag.SA20220712

    Corn and soybean are upland grain in the same season, and the contradiction of scrambling for land between corn and soybean is prominent in China, so it is necessary to explore the price relations between corn and soybean. In addition, agricultural futures have the function of price discovery compared with the spot. Therefore, the analysis and prediction of corn and soybean futures prices are of great significance for the management department to adjust the planting structure and for farmers to select the crop varieties. In this study, the correlation between corn and soybean futures prices was analyzed, and it was found that the corn and soybean futures prices have a strong correlation by correlation test, and soybean futures price is the Granger reason of corn futures price by Granger causality test. Then, the corn and soybean futures prices were predicted using a long short-term memory (LSTM) model. To optimize the futures price prediction model performance, Attention mechanism was introduced as Attention-LSTM to assign weights to the outputs of the LSTM model at different times. Specifically, LSTM model was used to process the input sequence of futures prices, the Attention layer assign different weights to the outputs, and then the model output the prediction results after a layer of linearity. The experimental results showed that Attention-LSTM model could significantly improve the prediction performance of both corn and soybean futures prices compared to autoregressive integrated moving average model (ARIMA), support vector regression model (SVR), and LSTM. For example, mean absolute error (MAE) was improved by 3.8% and 3.3%, root mean square error (RMSE) was improved by 0.6% and 1.8% and mean absolute error percentage (MAPE) was improved by 4.8% and 2.9% compared with a single LSTM, respectively. Finally, the corn futures prices were forecasted using historical corn and soybean futures prices together. Specifically, two LSTM models were used to process the input sequences of corn futures prices and soybean futures prices respectively, two parameters were trained to perform a weighted summation of the output of two LSTM models, and the prediction results were output by the model after a layer of linearity. The experimental results showed that MAE was improved by 6.9%, RMSE was improved by 1.1% and MAPE was improved by 5.3% compared with the LSTM model using only corn futures prices. The results verify the strong correlation between corn and soybean futures prices at the same time. In conclusion, the results verify the Attention-LSTM model can improve the performances of soybean and corn futures price forecasting compared with the general prediction model, and the combination of related agricultural futures price data can improve the prediction performances of agricultural product futures forecasting model.

  • Topic--Smart Farming of Field Crops
    FAN Chengzhi, WANG Ziwen, YANG Xingchao, LUO Yongkai, XU Xuexin, GUO Bin, LI Zhenhai
    Smart Agriculture. 2022, 4(4): 61-73. https://doi.org/10.12133/j.smartag.SA202212001

    Soil salinization in the Yellow River Delta is a difficult and miscellaneous disease to restrict the development of agricultural economy, and further hinders agricultural production. To explore the retrieval of soil salt content from remote sensing images under the condition of no vegetation coverage, the typical area of the Yellow River Delta was taken as the study area to obtain the hyperspectral of surface features, the multispectral of UAVs and the soil salt content of sample points. Three representative experimental areas with flat terrain and obvious soil salinization characteristics were set up in the study area, and 90 samples were collected in total. By optimizing the sensitive spectral parameters, machine learning algorithms of partial least squares regression (PLSR) and random forest (RF) for inversion of soil salt content were used in the study area. The results showed that: (1) Hyperspectral band of 1972 nm had the highest sensitivity to soil salt content, with correlation r of -0.31. The optimized spectral parameters of shortwave infrared can improve the accuracy of estimating soil salt content. (2) RF model optimized by two different data sources had better stability than PLSR model. RF model performed well in terms of generalization ability and balance error, but it had some over-fitting problems. (3) RF model based on ground feature hyperspectral (R2 =0.54, verified RMSE=3.30 g/kg) was superior to the random forest model based on UAV multispectral (R2 =0.54, verified RMSE=3.35 g/kg). The combination of image texture features improved the estimation accuracy of multispectral model, but the verification accuracy was still lower than that of hyperspectral model. (4) Soil salt content based on UAV multi-spectral imageries and RF model was mapped in the study area. This study demonstrates that the level of soil salinization in the Yellow River Delta region is significantly different in geographical location. The cultivated land in the study area is mainly light and moderate salinized soil with has certain restrictions on crop cultivation. Areas with low soil salt content are suitable for planting crops in low salinity fields, and farmland with high soil salt content is suitable for planting crops with high salinity tolerance. This study constructed and compared the soil salinity inversion models of the Yellow River Delta from two different sources of data, optimized them based on the advantages of each data source, explored the inversion of soil salinity content without vegetation coverage, and can provide a reference for more accurate inversion of land salinization.

  • Topic--Smart Farming of Field Crops
    LUO Qing, RAO Yuan, JIN Xiu, JIANG Zhaohui, WANG Tan, WANG Fengyi, ZHANG Wu
    Smart Agriculture. 2022, 4(4): 84-104. https://doi.org/10.12133/j.smartag.SA202210004

    Accurate peach detection is a prerequisite for automated agronomic management, e.g., peach mechanical harvesting. However, due to uneven illumination and ubiquitous occlusion, it is challenging to detect the peaches, especially when the peaches are bagged in orchards. To this end, an accurate multi-class peach detection method was proposed by means of improving YOLOv5s and using multi-modal visual data for mechanical harvesting in this paper. RGB-D dataset with multi-class annotations of naked and bagging peach was proposed, including 4127 multi-modal images of corresponding pixel-aligned color, depth, and infrared images acquired with consumer-level RGB-D camera. Subsequently, an improved lightweight YOLOv5s (small depth) model was put forward by introducing a direction-aware and position-sensitive attention mechanism, which could capture long-range dependencies along one spatial direction and preserve precise positional information along the other spatial direction, helping the networks accurately detect peach targets. Meanwhile, the depthwise separable convolution was employed to reduce the model computation by decomposing the convolution operation into convolution in the depth direction and convolution in the width and height directions, which helped to speed up the training and inference of the network while maintaining accuracy. The comparison experimental results demonstrated that the improved YOLOv5s using multi-modal visual data recorded the detection mAP of 98.6% and 88.9% on the naked and bagging peach with 5.05 M model parameters in complex illumination and severe occlusion environment, increasing by 5.3% and 16.5% than only using RGB images, as well as by 2.8% and 6.2% when compared to YOLOv5s. As compared with other networks in detecting bagging peaches, the improved YOLOv5s performed best in terms of mAP, which was 16.3%, 8.1% and 4.5% higher than YOLOX-Nano, PP-YOLO-Tiny, and EfficientDet-D0, respectively. In addition, the proposed improved YOLOv5s model offered better results in different degrees than other methods in detecting Fuji apple and Hayward kiwifruit, verified the effectiveness on different fruit detection tasks. Further investigation revealed the contribution of each imaging modality, as well as the proposed improvement in YOLOv5s, to favorable detection results of both naked and bagging peaches in natural orchards. Additionally, on the popular mobile hardware platform, it was found out that the improved YOLOv5s model could implement 19 times detection per second with the considered five-channel multi-modal images, offering real-time peach detection. These promising results demonstrated the potential of the improved YOLOv5s and multi-modal visual data with multi-class annotations to achieve visual intelligence of automated fruit harvesting systems.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    SHANG Fengnan, ZHOU Xuecheng, LIANG Yingkai, XIAO Mingwei, CHEN Qiao, LUO Chendi
    Smart Agriculture. 2022, 4(3): 120-131. https://doi.org/10.12133/j.smartag.SA202207001

    Dragon fruit detection in natural environment is the prerequisite for fruit harvesting robots to perform harvesting. In order to improve the harvesting efficiency, by improving YOLOX (You Only Look Once X) network, a target detection network with an attention module was proposed in this research. As the benchmark, YOLOX-Nano network was chose to facilitate deployment on embedded devices, and the convolutional block attention module (CBAM) was added to the backbone feature extraction network of YOLOX-Nano, which improved the robustness of the model to dragon fruit target detection to a certain extent. The correlation of features between different channels was learned by weight allocation coefficients of features of different scales, which were extracted for the backbone network. Moreover, the transmission of deep information of network structure was strengthened, which aimed at reducing the interference of dragon fruit recognition in the natural environment as well as improving the accuracy and speed of detection significantly. The performance evaluation and comparison test of the method were carried out. The results showed that, after training, the dragon fruit target detection network got an AP0.5 value of 98.9% in the test set, an AP0.5:0.95 value of 72.4% and F1 score was 0.99. Compared with other YOLO network models under the same experimental conditions, on the one hand, the improved YOLOX-Nano network model proposed in this research was more lightweight, on the other hand, the detection accuracy of this method surpassed that of YOLOv3, YOLOv4 and YOLOv5 respectively. The average detection accuracy of the improved YOLOX-Nano target detection network was the highest, reaching 98.9%, 26.2% higher than YOLOv3, 9.8% points higher than YOLOv4-Tiny, and 7.9% points higher than YOLOv5-S. Finally, real-time tests were performed on videos with different input resolutions. The improved YOLOX-Nano target detection network proposed in this research had an average detection time of 21.72 ms for a single image. In terms of the size of the network model was only 3.76 MB, which was convenient for deployment on embedded devices. In conclusion, not only did the improved YOLOX-Nano target detection network model accurately detect dragon fruit under different lighting and occlusion conditions, but the detection speed and detection accuracy showed in this research could able to meet the requirements of dragon fruit harvesting in natural environment requirements at the same time, which could provide some guidance for the design of the dragon fruit harvesting robot.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    HAN Leng, HE Xiongkui, WANG Changling, LIU Yajia, SONG Jianli, QI Peng, LIU Limin, LI Tian, ZHENG Yi, LIN Guihai, ZHOU Zhan, HUANG Kang, WANG Zhong, ZHA Hainie, ZHANG Guoshan, ZHOU Guotao, MA Yong, FU Hao, NIE Hongyuan, ZENG Aijun, ZHANG Wei
    Smart Agriculture. 2022, 4(3): 1-11. https://doi.org/10.12133/j.smartag.SA200201014

    Traditional orchard production is facing problems of labor shortage due to the aging, difficulties in the management of agricultural equipment and production materials, and low production efficiency which can be expected to be solved by building a smart orchard that integrates technologies of Internet of Things(IoT), big data, equipment intelligence, et al. In this study, based on the objectives of full mechanization and intelligent management, a smart orchard was built in Pinggu district, an important peaches and pears fruit producing area of Beijing. The orchard covers an aera of more than 30 hm2 in Xiying village, Yukou town. In the orchard, more than 10 kinds of information acquisition sensors for pests, diseases, water, fertilizers and medicines are applied, 28 kinds of agricultural machineries with intelligent technical support are equipped. The key technologies used include: intelligent information acquisition system, integrated water and fertilizer management system and intelligent pest management system. The intelligent operation equipment system includes: unmanned lawn mower, intelligent anti-freeze machine, trenching and fertilizer machine, automatic driving crawler, intelligent profiling variable sprayer, six-rotor branch-to-target drone, multi-functional picking platform and finishing and pruning machine, etc. At the same time, an intelligent management platform has been built in the smart orchard. The comparison results showed that, smart orchard production can reduce labor costs by more than 50%, save pesticide dosage by 30% ~ 40%, fertilizer dosage by 25% ~ 35%, irrigation water consumption by 60% ~ 70%, and comprehensive economic benefits increased by 32.5%. The popularization and application of smart orchards will further promote China's fruit production level and facilitate the development of smart agriculture in China.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    GUO Jiangpeng, WANG Pengfei, LI Xinhao, YANG Xin, LI Jianping, BIAN Yongliang, XUE Chunlin
    Smart Agriculture. 2022, 4(3): 75-85. https://doi.org/10.12133/j.smartag.SA202201015

    In view of the uneven distribution of airflow inside the multi-air-duct sprayer, the air flow caused by the air outlet is disturbed and the droplet can not be evenly deposited on the fruit tree canopy. In this research, the length parameter of the inner baffle plate of the multi-duct sprayer was optimized. The Computational Fluid Dynamics (CFD) was used to simulate and analyze the internal airflow of the air supply system of the multi-duct sprayer based on Star-CCM+ software. The standard deviations of the wind speed of the wind outlet 1~6 at different guide plates were 0.7468, 0.6776, 1.4441, 5.1305, 4.5768 and 0.8209, respectively. Among them, the standard deviations of wind speed value at Point 1, Point 2 and Point 6 were less than 1, indicating that the change of deflector length has little impact on the speed change. The standard deviations of wind speed value at Point 3, Point 4 and Point 5 were large, indicating that with the change of deflector length, the wind speed at Air outlet 3, Air outlet 4, Air outlet 5 were greatly affected. On this basis, through the response surface analysis of Air outlet 3, Air outlet 4 and Air outlet 5, it was determined that, the length of Deflector 1 as 200 mm, the length of Deflector 2 as 60 mm and the length of Deflector 3 as 50 mm, was the optimal parameter combination. Under the optimal combination parameters, the wind speed values of symmetrical Air outlet 3 and Air outlet 6 were 39.135 and 41.320 m/s, respectively, with a relative deviations of 5.58%. The wind speed values of air outlet 4 and air outlet 5 were 33.022 and 34.328 m/s, respectively, with a relative deviation of 3.95%, which meeting the design requirements of sprayer. The indoor wind speed test results showed that the average wind speed of the upper layer was 15.75 m/s, the average wind speed of the middle layer was 20.83 m/s, and the average wind speed of the lower layer was 28.27 m/s, which met the end speed principle. The wind field was distributed according to the shape of the fruit tree canopy. The wind field of the left and right sides of the sprayer was symmetrical distributed and the air distribution was uniform. The work can provide a reference for the design of multi-duct sprayer.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    SONG Shuran, HU Shengyang, SUN Daozong, DAI Qiufang, XUE Xiuyun, XIE Jiaxing, LI Zhen
    Smart Agriculture. 2022, 4(3): 86-94. https://doi.org/10.12133/j.smartag.SA202205005

    The orchard in the mountainous area is rugged and steep, and there is no road for large-scale plant protection machinery traveling in the orchard, so it is difficult for mobile spraying machinery to enter. In order to solve the above problems, the automatic pipeline spraying technology and facilities were studied. A pipeline automatic spraying facility suitable for mountainous orchards was designed, which included spraying head, field spraying pipeline, automatic spraying controller and spraying groups. The spraying head was composed of a spraying unit and a constant pressure control system, which pressurized the pesticide liquid and stabilized the liquid pressure according to the preset pressure value to ensure a better atomization effect. Field spraying pipeline consisted of main pipeline, valves and spraying groups. In order to perform automatic spraying, a solenoid valve was installed between the main pipeline and each spraying group, and the automatic spraying operation of each spraying group was controlled automatically by the opening or closing of the solenoid valve. An automatic spraying controller composed of main controller, solenoid valve driving circuit, solenoid valve controlling node and power supplying unit was developed, and the controlling software was also programmed in this research. The main controller had manual and automatic two working modes. The solenoid valve controlling node was used to send wireless signals to the main controller and receive wireless signals from the main controller, and open or close the corresponding solenoid valve according to the received control signal. During the spraying operation, the pesticide liquid flowed into the orchard from the spray head through the pipeline. The automatic spray controller was used to control the solenoid valve to open or close the spray group one by one, and implement manual control or automatic control of spraying. In order to determine the continuous opening time of the solenoid valve, an effectiveness of the spray test was carried out. The spraying test results showed that spraying effectiveness could be guaranteed by opening solenoid valve for 8 s continuously. The efficiency of this pipeline automatic spraying facility was 2.61 hm2/h, which was 45-150 times that of manual spraying, and 2.1 times that of unmanned aerial vehicle spraying. The automatic pipeline spraying technology in mountainous orchards had obvious advantages in the timeliness of pest controlling. This research can provide references and ideas for the development of spray technology and intelligent spraying facilities in mountainous orchards.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    WANG Hui, CHEN Ruipeng, YU Zhixue, HE Yue, ZHANG Fan, XIONG Benhai
    Smart Agriculture. 2022, 4(3): 143-151. https://doi.org/10.12133/j.smartag.SA202205006

    Phytophthora strawberries, as a kind of plant pathogenic fungi, can cause strawberry skin and crown rot without safe and effective treatment, which affect the economic benefits of planting strawberries. Therefore, it is urgent to use low-cost diagnostic methods to achieve early prevention. Strawberry plants infected with Phytophthora cactorum would release a unique organic volatile gas, 4-ethylphenol, with a concentration ranging from 1.12 to 22.56 mg/kg, which could be used as a marker gas for rapid diagnosis of the disease. In this study, semiconducting single-walled carbon nanotubes (SWNT) and field effect sensors (FET) were used to prepare semiconductor field effect gas sensors (SWNT/FET) without selectivity. And then the metal porphyrin MnOEP with high sensitivity and selectivity to 4-ethylphenol was immoblized on the SWNT's surface to obtain MnOEP-SWNT/FET. MnOEP-SWNT/FET has the advantages of low cost, low power consumption, small size, high sensitivity and easy integration, which can effectively overcome the shortcomings of gas chromatography-mass spectrometry, high-performance liquid chromatography and other analytical methods. By comparing the sensitivity and selectivity of different sensors, MnOEP-SWNT/FET is very suitable for real-time monitoring of 4-ethylphenol. The key reasons for the high sensitivity and selectivity are: MnOEP is a macromolecular heterocyclic compound formed by four pyrrole rings connected together by methylene and manganese ion(Mn), each pyrrole ring consists of four carbons and one nitrogen, and all nitrogen atoms inside the ring form a central cavity; the coordination metal ions of MnOEP are in an unsaturated state, gas molecules can interact with the central metal ions through van der Waals force and hydrogen bond at the axial position of MnOEP to change their own optical or electrical properties. MnOEP-SWNT/FET was studied by Raman spectrum, UV spectrum and voltammetry. The physical and chemical properties were analyzed and the detection conditions were optimized to improve the gas sensitivity of MnOEP-SWNT/FET to 4-ethylphenol. Under the optimal detection conditions, MnOEP-SWNT/FET has a good linear relationship with 0.25% ~100% saturated vapor of 4-ethylphenol (20 ℃) and the detection limit is 0.15% saturated vapor of 4-ethylphenol. The relative standard error of different concentrations was less than 10%. By measuring the actual samples, it has high detection accuracy for strawberry plants infected with Phytophthora, but it still exists false positive for healthy strawberry.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    ZHANG Zhibo, ZHAO Xining, GAO Xiaodong, ZHANG Li, YANG Menghao
    Smart Agriculture. 2022, 4(3): 95-107. https://doi.org/10.12133/j.smartag.SA202206001

    The rapid increasing of apple planting area on the Loess Plateau has exerted an important influence on the regional eco-hydrology and socio-economic development. However, the orchards in this area are small and complex, and there are only county or city scale statistical data, lack of actual spatial distribution information. To this end, for the extraction of apple orchards on the Loess Plateau, in this study, a professional dataset of low-altitude remote sensing images acquired by unmanned aerial vehicle was firstly established. The R_34_Linknet network and other five commonly used deep learning semantic segmentation models SegNet, FCN_8s, DeeplabV3+, UNet and Linknet were applied to the spatial distribution extraction of apple orchards on the Loess Plateau, and the best-performing model was R_34_Linknet, with a F1 score of 87.1%, a pixel accuracy (PA) of 92.3%, an mean intersection over union (MioU) of 81.2%, a frequency weighted intersection over union (FWIoU) of 85.7%, and the mean pixel accuracy (MPA) was 89.6%. The spatial pyramid pool structure (ASPP) and R_34_Linknet network was combined to expand the receptive field of the network and get R_34_Linknet_ASPP network, and then ASPP structure was improved. Combining the spatial pyramid pooling (ASPP) with the R_34_Linknet network to expand the receptive field of the network and obtain a R_34_Linknet_ASPP network; Then the ASPP structure was improved to get a R_34_Linknet_ASPP+ network. The performance of the three networks were compared. R_34_Linknet_ASPP+ got the best performance, with 86.3% for F1, 94.7% for PA, 82.7% for MIoU, 89.0% for FWIoU, and 92.3% for MPA on the test set. The accuracy of apple orchard extraction in Wangdonggou, Changwu County and Tongji Village, Baishui County using R_34_Linknet_ASPP+ were 94.22% and 95.66%, respectively. In Wangdonggou, it was 1.21% and 0.58% higher than R_34_Linknet and R_34_Linknet_ASPP, respectively. In Tongji village, it was 1.70% and 0.90% higher than R_34_Linknet and R_34_Linknet_ASPP, respectively. The results show that the proposed R_34_Linknet_ASPP+ method can extract apple orchards accurately, the edge treatment of apple orchard plots is better, the method can be used as the technical support and theoretical basis for research on the spatial distribution mapping of apple orchards on the Loess Plateau.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    MIAO Youyi, CHEN Hong, CHEN Xiaobing, TIAN Haoyu, YUAN Dong
    Smart Agriculture. 2022, 4(3): 42-52. https://doi.org/10.12133/j.smartag.SA202206007

    In order to solve the problems of high labor intensity, low efficiency of manual operation and lack of supporting machinery in the fruit harvesting of modern orchards, a self-propelled orchard multi-station harvesting equipment was designed in combination with the fruit tree dwarf anvil wide-row dense planting mode and agronomic planting requirements. The whole machine structure and working principle of the self-propelled orchard multi-station harvesting equipment were expounded. According to the environmental conditions of mountainous orchards, the crawler chassis structure was designed, and the working speed was 0~2 km/h. The operating platform including left extension platform and right extension platform was designed according to the difference of fruit tree row spacing, and the working width of the operating platform was 1500~2700 mm. In order to improve the working efficiency and ensure the same picking speed of upper and lower operators, the picking operation mode of "two sides, two heights and six stations" was proposed by comparing the difference in the working flexibility between the operator on the platform and the operator on the ground during the operation of the machine, and the in-and-out channels of fruit boxes and the automatic collection and packing device were designed. The front and rear unobstructed fruit box access system was composed of the front loading and unloading mechanism, the rear loading and unloading mechanism and the fruit box slide rail, which was convenient for the empty fruit box to enter the fruit loading station of the working platform from the front and unloading from the rear after the fruit was filled. Six sub-conveyor belts were designed to handle apples harvested by six non interacting operators at the same time. The prototype was test in the field, and the packing uniform distribution coefficient calculation method was proposed to evaluate the uniformity of fruit packing, and the performance of the prototype was comprehensively evaluated in combination with the fruit damage rate and packing speed. The results showed that, the designed self-propelled orchard multi-station harvesting equipment could synchronize with the six stations manual harvesting speed. At the same time, with the help of the expansion platform, the apple picking range covered the entire canopy of the fruit tree. The prototype worked smoothly, and the speed of each conveyor belt was in good coordination with manual picking, and there was no apple congestion occurred. The apple harvest damage rate was 4.67%, the packing uniform distribution coefficient was 1.475, and the packing speed was 72.9 apples per minute, which could meet the requirements of orchard harvest operation.

  • LI Yang, PENG Yankun, LYU Decai, LI Yongyu, LIU Le, ZHU Yujie
    Smart Agriculture. 2022, 4(3): 132-142. https://doi.org/10.12133/j.smartag.SA202206012

    The detecting and grading of the internal quality of apples is an effective means to increase the added value of apples, protect the health of residents, meet consumer demand and improve market competitiveness. Therefore, an apple internal quality detecting module and a grading module were developed in this research to constitute a movable apple internal quality orchard origin grading system, which could realize the detection of apple sugar content and apple moldy core in orchard origin and grading according to the set grading standard. Based on this system, a multiplicative effect elimination (MEE) based spectral correction method was proposed to eliminate the multiplicative effect caused by the differences in physical properties of apples and improve the internal quality detection accuracy. The method assumed that the multiplication coefficient in the spectrum was closely related to the spectral data at a certain wavelength, and divided the original spectrum by the data at this wavelength point to achieve the elimination of the multiplicative scattering effect of the spectrum. It also combined the idea of least-squares loss function to set the loss function to solve for the optimal multiplication coefficient point. To verify the validity of the method, after pre-processing the apple spectra with multiple scattering correction (MSC), standard normal variate transform (SNV), and MEE algorithms, the partial least squares regression (PLSR) prediction models for apple sugar content and partial least squares-discriminant analysis (PLS-DA) models for apple moldy core were developed, respectively. The results showed that the MEE algorithm had the best results compared to the MSC and SNV algorithms. The correlation coefficient of correction set (Rc), root mean square error of correction set (RMSEC), the correlation coefficient of prediction set (Rp), and root mean square error of prediction set (RMSEP) for sugar content were 0.959, 0.430%, 0.929, and 0.592%, respectively; the sensitivity, specificity, and accuracy of correction set and prediction set for moldy core were 98.33%, 96.67%, 97.50%, 100.00%, 90.00%, and 95.00%, respectively. The best prediction model established was imported into the system for grading tests, and the results showed that the grading correct rate of the system was 90.00% and the grading speed was 3 pcs/s. In summary, the proposed spectral correction method is more suitable for apple transmission spectral correction. The mobile orchard local grading system of apple internal quality combined with the proposed spectral correction method can accurately detect apple sugar content and apple moldy core. The system meets the demand for internal quality detecting and grading of apples in orchard production areas.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    XIA Ye, LEI Xiaohui, QI Yannan, XU Tao, YUAN Quanchun, PAN Jian, JIANG Saike, LYU Xiaolan
    Smart Agriculture. 2022, 4(3): 108-119. https://doi.org/10.12133/j.smartag.SA202207006

    Mechanized and intelligent flower thinning is a high-speed flower thinning method nowadays. The classification and detection of flowers and flower buds are the basic requirements to ensure the normal operation of the flower thinning machine. Aiming at the problems of pear inflorescence detection and classification in the current intelligent production of pear orchards, a Y-shaped shed pear orchard inflorescence recognition algorithm Ghost-YOLOv5s-BiFPN based on improved YOLOv5s was proposed in this research. The detection model was obtained by labeling and expanding the pear tree bud and flower images collected in the field and sending them to the algorithm for training. The Ghost-YOLOv5s-BiFPN algorithm used the weighted bidirectional feature pyramid network to replace the original path aggregation network structure, and effectively fuse the features of different sizes. At the same time, ghost module was used to replace the traditional convolution, so as to reduce the amount of model parameters and improve the operation efficiency of the equipment without reducing the accuracy. The field experiment results showed that the detection accuracy of the Ghost-YOLOv5s-BiFPN algorithm for the bud and flower in the pear inflorescence were 93.21% and 89.43%, respectively, with an average accuracy of 91.32%, and the detection time of a single image was 29 ms. Compared with the original YOLOv5s algorithm, the detection accuracy was improved by 4.18%, and the detection time and model parameters were reduced by 9 ms and 46.63% respectively. Compared with the original YOLOV5s network, the mAP and recall rate were improved by 4.2% and 2.7%, respectively; the number of parameters, model size and floating point operations were reduced by 46.6%, 44.4% and 47.5% respectively, and the average detection time was shortened by 9 ms. With Ghost convolution and BIFPN adding model, the detection accuracy has been improved to a certain extent, and the model has been greatly lightweight, effectively improving the detect efficiency. From the thermodynamic diagram results, it can be seen that BIFPN structure effectively enhances the representation ability of features, making the model more effective in focusing on the corresponding features of the target. The results showed that the algorithm can meet the requirements of accurate identification and classification of pear buds and flowers, and provide technical support for the follow-up pear garden to achieve intelligent flower thinning.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    LI Yangfan, HE Xiongkui, HAN Leng, HUANG Zhan, HE Miao
    Smart Agriculture. 2022, 4(3): 53-62. https://doi.org/10.12133/j.smartag.SA202207007

    In order to solve the problems of pesticides abuse, nonuniformity deposition and low operating efficiency, build up the smart mango orchard, sedimentary properties of liquids in mango canopy of two orchard pesticide machinery, i.e., orchard caterpillar mist sprayer and six-rotor unmanned aerial vehicle (UAV) of were compared. Mango canopy was divided into upper, middle and lower canopy, tartrazine wsa selected as the tracer, high-definition printing paper and filter paper were used to collect pesticide droplets, the image processing methods such as deposition distribution uniformity were used to analyze the droplets. The experimental results showed that, for the surface droplets coverage rate of upper canopy leaf, unmanned aerial vehicle (UAV) was significantly higher than the cartipillar mist sprayer, there was no significant difference for the middle and lower canopy leaf. The the average coverage rate of both the front and back of leaves in UAV treatment group were 1.5~2 times for cartipillar mist sprayer, and got more deposition in back of leaves compare with caterpillar mist sprayer. The density of droplets on the front of the leaves of the mist sprayer treatment was significantly higher than that of the UAV treatment, but there was no significant difference on the back of the leaves. Both the front and back of the leaves of the plant protection UAV did not meet the requirements of disease and pest control with a low spray amount of 20/cm2. The liquid deposition of mist sprayer concentrated in the middle and lower canopy (61.1%), and while for the UAVs, it concentrated in the upper canopy (43.0%). The proportion of the deposition in the canopy was higher than that of the UAVs (48.6%), but the deposition capacity of mist sprayer in the upper canopy was insufficient, accounting for only 17%. The research shows that, compared with UAV, caterpillar mist sprayer is more suitable for the pest control of lower and middlein canopy, at the same time, the high density of droplets cover also has obvious advantages when spraying fungicide. UAV is more suitable for the external tidbits pest control of upper mango canopy, such as thrips, anthrax. According to the experimental results, a stereoscopic plant protection system can be built up in which can use the advantages of both caterpillar mist sprayer and UAV to achieve uniform coverage of pesticide in the mango tree canopy.

  • Overview Article
    GUO Yangyang, DU Shuzeng, QIAO Yongliang, LIANG Dong
    Smart Agriculture. 2023, 5(1): 52-65. https://doi.org/10.12133/j.smartag.SA202205009

    Accurate and efficient monitoring of animal information, timely analysis of animal physiological and physical health conditions, and automatic feeding and farming management combined with intelligent technologies are of great significance for large-scale livestock farming. Deep learning techniques, with automatic feature extraction and powerful image representation capabilities, solve many visual challenges, and are more suitable for application in monitoring animal information in complex livestock farming environments. In order to further analyze the research and application of artificial intelligence technology in intelligent animal farming, this paper presents the current state of research on deep learning techniques for tag detection recognition, body condition evaluation and weight estimation, and behavior recognition and quantitative analysis for cattle, sheep and pigs. Among them, target detection and recognition is conducive to the construction of electronic archives of individual animals, on which basis the body condition and weight information, behavior information and health status of animals can be related, which is also the trend of intelligent animal farming. At present, intelligent animal farming still faces many problems and challenges, such as the existence of multiple perspectives, multi-scale, multiple scenarios and even small sample size of a certain behavior in data samples, which greatly increases the detection difficulty and the generalization of intelligent technology application. In addition, animal breeding and animal habits are a long-term process. How to accurately monitor the animal health information in real time and effectively feed it back to the producer is also a technical difficulty. According to the actual feeding and management needs of animal farming, the development of intelligent animal farming is prospected and put forward. First, enrich the samples and build a multi perspective dataset, and combine semi supervised or small sample learning methods to improve the generalization ability of in-depth learning models, so as to realize the perception and analysis of the animal's physical environment. Secondly, the unified cooperation and harmonious development of human, intelligent equipment and breeding animals will improve the breeding efficiency and management level as a whole. Third, the deep integration of big data, deep learning technology and animal farming will greatly promote the development of intelligent animal farming. Last, research on the interpretability and security of artificial intelligence technology represented by deep learning model in the breeding field. And other development suggestions to further promote intelligent animal farming. Aiming at the progress of research application of deep learning in livestock smart farming, it provides reference for the modernization and intelligent development of livestock farming.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    FENG Han, ZHANG Hao, WANG Zi, JIANG Shijie, LIU Weihong, ZHOU Linghui, WANG Yaxiong, KANG Feng, LIU Xingxing, ZHENG Yongjun
    Smart Agriculture. 2022, 4(3): 12-23. https://doi.org/10.12133/j.smartag.SA202207002

    To solve the problems of low level of digitalization of orchard management and relatively single construction method, a three-dimensional virtual orchard construction method based on laser point cloud was proposed in this research. First, the hand-held 3D point cloud acquistion equipment (3D-BOX) combined with the lidar odometry and mapping (SLAM-LOAM) algorithm was used to complete the acquisition of the point cloud data set of orchard; then the outliers and noise points of the point cloud data were removed by using the statistical filtering algorithm, which was based on the K-neighbor distance statistical method. To achieve this, a distance threshold model for removing noise points was established. When a discrete point exceeded, it would be marked as an outlier, and the point was separated from the point cloud dataset to achieve the effect of discrete point filtering. The VoxelGrid filter was used for down sampling, the cloth simulation filtering (CSF) cloth simulation algorithm was used to calculate the distance between the cloth grid points and the corresponding laser point cloud, and the distinction between ground points and non-ground points was achieved by dividing the distance threshold, and when combined with the density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm, ground removal and cluster segmentation of orchard were realized; finally, the Unity3D engine was used to build a virtual orchard roaming scene, and convert the real-time GPS data of the operating equipment from the WGS-84 coordinate system to the Gauss projection plane coordinate system through Gaussian projection forward calculation. The real-time trajectory of the equipment was displayed through the LineRenderer, which realized the visual display of the motion trajectory control and operation trajectory of the working machine. In order to verify the effectiveness of the virtual orchard construction method, the test of orchard construction method was carried out in the Begonia fruit and the mango orchard. The results showed that the proposed point cloud data processing method could achieve the accuracy of cluster segmentation of Begonia fruit trees and mango trees 95.3% and 98.2%, respectively. Compared with the row spacing and plant spacing of fruit trees in the actual mango orchard, the average inter-row error of the virtual mango orchard was about 3.5%, and the average inter-plant error was about 6.6%. And compared the virtual orchard constructed by Unity3D with the actual orchard, the proposed method can effectively reproduce the actual three-dimensional situation of the orchard, and obtain a better visualization effect, which provides a technical solution for the digital modeling and management of the orchard.

  • Special Issue--Key Technologies and Equipment for Smart Orchard
    LIU Limin, HE Xiongkui, LIU Weihong, LIU Ziyan, HAN Hu, LI Yangfan
    Smart Agriculture. 2022, 4(3): 63-74. https://doi.org/10.12133/j.smartag.SA202207008

    To realize the autonomous navigation and automatic target spraying of intelligent plant protect machinery in orchard, in this study, an autonomous navigation and automatic target spraying robot for orchards was developed. Firstly, a single 3D light detection and ranging (LiDAR) was used to collect fruit trees and other information around the robot. The region of interest (ROI) was determined using information on the fruit trees in the orchard (plant spacing, plant height, and row spacing), as well as the fundamental LiDAR parameters. Additionally, it must be ensured that LiDAR was used to detect the canopy information of a whole fruit tree in the ROI. Secondly, the point clouds within the ROI was two-dimension processing to obtain the fruit tree center of mass coordinates. The coordinate was the location of the fruit trees. Based on the location of the fruit trees, the row lines of fruit tree were obtained by random sample consensus (RANSAC) algorithm. The center line (navigation line) of the fruit tree row within ROI was obtained through the fruit tree row lines. The robot was controlled to drive along the center line by the angular velocity signal transmitted from the computer. Next, the ATRS's body speed and position were determined by encoders and the inertial measurement unit (IMU). And the collected fruit tree zoned canopy information was corrected by IMU. The presence or absence of fruit tree zoned canopy was judged by the logical algorithm designed. Finally, the nozzles were controlled to spray or not according to the presence or absence of corresponding zoned canopy. The conclusions were obtained. The maximum lateral deviation of the robot during autonomous navigation was 21.8 cm, and the maximum course deviation angle was 4.02°. Compared with traditional spraying, the automatic target spraying designed in this study reduced pesticide volume, air drift and ground loss by 20.06%, 38.68% and 51.40%, respectively. There was no significant difference between the automatic target spraying and the traditional spraying in terms of the percentage of air drift. In terms of the percentage of ground loss, automatic target spraying had 43% at the bottom of the test fruit trees and 29% and 28% at the middle of the test fruit trees and the left and right neighboring fruit trees. But in traditional spraying, the percentage of ground loss was, in that sequence, 25%, 38%, and 37%. The robot developted can realize autonomous navigation while ensuring the spraying effect, reducing the pesticides volume and loss.

  • Topic--Smart Animal Husbandry Key Technologies and Equipment
    MA Weihong, LI Jiawei, WANG Zhiquan, GAO Ronghua, DING Luyu, YU Qinyang, YU Ligen, LAI Chengrong, LI Qifeng
    Smart Agriculture. 2022, 4(2): 99-109. https://doi.org/10.12133/j.smartag.SA202203005

    Focusing on the low level of management and informatization and intelligence of the beef cattle industry in China, a big data platform for commercial beef cattle breeding, referring to the experience of international advanced beef cattle breeding countries, was proposed in this research. The functions of the platform includes integrating germplasm resources of beef cattle, automatic collecting of key beef cattle breeding traits, full-service support for the beef cattle breeding process, formation of big data analysis and decision-making system for beef cattle germplasm resources, and joint breeding innovation model. Aiming at the backward storage and sharing methods of beef cattle breeding data and incomplete information records in China, an information resource integration platform and an information database for beef cattle germplasm were established. Due to the vagueness and subjectivity of the breeding performance evaluation standard, a scientific online evaluation technology of beef cattle breeding traits and a non-contact automatic acquisition and intelligent calculation method were proposed. Considering the lack of scientific and systematic breeding planning and guidance for farmers in China, a full-service support system for beef cattle breeding and nanny-style breeding guidance during beef cattle breeding was developed. And an interactive progressive decision-making method for beef cattle breeding to solve the lack of data accumulation of beef cattle germplasm was proposed. The main body of breeding and farming enterprises was not closely integrated, according to that, the innovative breeding model of regional integration was explored. The idea of commercial beef cattle breeding big data software platform and the technological and model innovation content were also introduced. The technology innovations included the deep mining of germplasm resources data and improved breed management pedigree, the automatic acquisition and evaluation technology of non-contact breeding traits, the fusion of multi-source heterogeneous information to provide intelligent decision support. The future goal is to form a sustainable information solution for China's beef cattle breeding industry and improve the overall level of China's beef cattle breeding industry.

  • Information Perception and Acquisition
    HE Ruimin, ZHENG Kefeng, WEI Qinyang, ZHANG Xiaobin, ZHANG Jun, ZHU Yihang, ZHAO Yiying, GU Qing
    Smart Agriculture. 2022, 4(2): 163-173. https://doi.org/10.12133/j.smartag.SA202201012

    Factory-like rearing of silkworm (Bombyx mori) using artificial diet for all instars is a brand-new rearing mode of silkworm. Accurate feeding is one of the core technologies to save cost and increase efficiency in factory silkworm rearing. Automatic identification and counting of silkworm play a key role to realize accurate feeding. In this study, a machine vision system was used to obtain digital images of silkworms during main instars, and an improved Mask R-CNN model was proposed to detect the silkworms and residual artificial diet. The original Mask R-CNN was improved using the noise data of annotations by adding a pixel reweighting strategy and a bounding box fine-tuning strategy to the model frame. A more robust model was trained to improve the detection and segmentation abilities of silkworm and residual feed. Three different data augmentation methods were used to expand the training dataset. The influences of silkworm instars, data augmentation, and the overlap between silkworms on the model performance were evaluated. Then the improved Mask R-CNN was used to detect silkworms and residual feed. The AP50 (Average Precision at IoU=0.5) of the model for silkworm detection and segmentation were 0.790 and 0.795, respectively, and the detection accuracy was 96.83%. The detection and segmentation AP50 of residual feed were 0.641 and 0.653, respectively, and the detection accuracy was 87.71%. The model was deployed on the NVIDIA Jetson AGX Xavier development board with an average detection time of 1.32 s and a maximum detection time of 2.05 s for a image. The computational speed of the improved Mask R-CNN can meet the requirement of real-time detection of the moving unit of the silkworm box on the production line. The model trained by the fifth instar data showed a better performance on test data than the fourth instar model. The brightness enhancement method had the greatest contribution to the model performance as compared to the other data augmentation methods. The overlap between silkworms also negatively affected the performance of the model. This study can provide a core algorithm for the research and development of the accurate feeding information system and feeding device for factory silkworm rearing, which can improve the utilization rate of artificial diet and improve the production and management level of factory silkworm rearing.

  • Information Perception and Acquisition
    ZHENG Chenxi, WEN Weiliang, LU Xianju, GUO Xinyu, ZHAO Chunjiang
    Smart Agriculture. 2022, 4(2): 150-162. https://doi.org/10.12133/j.smartag.SA202203009

    Aiming at the difficulty of accurately extract the phenotypic traits of plants and organs from images or point clouds caused by the multiple tillers and serious cross-occlusion among organs of wheat plants, to meet the needs of accurate phenotypic analysis of wheat plants, three-dimensional (3D) digitization was used to extract phenotypic parameters of wheat plants. Firstly, digital representation method of wheat organs was given and a 3D digital data acquisition standard suitable for the whole growth period of wheat was formulated. According to this standard, data acquisition was carried out using a 3D digitizer. Based on the definition of phenotypic parameters and semantic coordinates information contained in the 3D digitizing data, eleven conventional measurable phenotypic parameters in three categories were quantitative extracted, including lengths, thicknesses, and angles of wheat plants and organs. Furthermore, two types of new parameters for shoot architecture and 3D leaf shape were defined. Plant girth was defined to quantitatively describe the looseness or compactness by fitting 3D discrete coordinates based on the least square method. For leaf shape, wheat leaf curling and twisting were defined and quantified according to the direction change of leaf surface normal vector. Three wheat cultivars including FK13, XN979, and JM44 at three stages (rising stage, jointing stage, and heading stage) were used for method validation. The Open3D library was used to process and visualize wheat plant data. Visualization results showed that the acquired 3D digitization data of maize plants were realistic, and the data acquisition approach was capable to present morphological differences among different cultivars and growth stages. Validation results showed that the errors of stem length, leaf length, stem thickness, stem and leaf angle were relatively small. The R2 were 0.93, 0.98, 0.93, and 0.85, respectively. The error of the leaf width and leaf inclination angle were also satisfactory, the R2 were 0.75 and 0.73. Because wheat leaves are narrow and easy to curl, and some of the leaves have a large degree of bending, the error of leaf width and leaf angle were relatively larger than other parameters. The data acquisition procedure was rather time-consuming, while the data processing was quite efficient. It took around 133 ms to extract all mentioned parameters for a wheat plant containing 7 tillers and total 27 leaves. The proposed method could achieve convenient and accurate extraction of wheat phenotypes at individual plant and organ levels, and provide technical support for wheat shoot architecture related research.

  • Intelligent Management and Control
    GENG Wenxuan, ZHAO Junye, RUAN Jiwei, HOU Yuehui
    Smart Agriculture. 2022, 4(2): 183-193. https://doi.org/10.12133/j.smartag.SA202203006

    Artificial intelligence (AI) assisted planting can improve in the precise management of protected horticultural crops while also alleviating the increasingly prevalent problem of labor shortage. As a typical representative of labor-intensive industries, the strawberry industry has a growing need for intelligent technology. To assess the regulatory effects of various AI strategies and key technologies on strawberry production in greenhouse, as well as provide valuable references for the innovation and industrial application of AI in horticultural crops, four AI planting strategies were evaluated. Four 96 m2 modern greenhouses were used for planting strawberry plants. Each greenhouse was equipped with standard sensors and actuators, and growers used artificial intelligence algorithms to remotely control the greenhouse climate and crop growth. The regulatory effects of four different AI planting strategies on strawberry growth, fruit yield and qualitywere compared and analyzed. And human-operated cultivation was taken as a reference to analyze the characteristics, existing problems and shortages. Each AI planting strategy simulated and forecast the greenhouse environment and crop growth by constructing models. AI-1 implemented greenhouse management decisions primarily through the knowledge graph method, whereas AI-2 transferred the intelligent planting model of Dutch greenhouse tomato planting to strawberry planting. AI-3 and AI-4 created growth and development models for strawberries based on World Food Studies (WOFOST) and Product of Thermal Effectiveness and Photosynthesis Active Radiation (TEP), respectively. The results showed that all AI supported strategy outperformed a human-operated greenhouse that served as reference. In comparison to the human-operated cultivation group, the average yield and output value of the AI planting strategy group increased 1.66 and 1.82 times, respectively, while the highest Return on Investment increased 1.27 times. AI can effectively improve the accuracy of strawberry planting management and regulation, reduce water, fertilizer, labor input, and obtain higher returns under greenhouse production conditions equipped with relatively complete intelligent equipment and control components, all with the goal of high yield and quality. Key technologies such as knowledge graphs, deep learning, visual recognition, crop models, and crop growth simulators all played a unique role in strawberry AI planting. The average yield and Return on Investment (ROI) of the AI groups were greater than those of the human-operated cultivation group. More specifically, the regulation of AI-1 on crop development and production was relatively stable, integrating expert experience, crop data, and environmental data with knowledge graphs to create a standardized strawberry planting knowledge structure as well as intelligent planting decision-making approach. In this study, AI-1 achieved the highest yield, the heaviest average fruit weight, and the highest ROI. This group's AI-assisted strategy optimized the regulatory effect of growth, development, and yield formation of strawberry crops in consideration of high yield and quality. However, there are still issues to be resolved, such as the difficulty of simulating the disturbance caused by manual management and collecting crop ontology data.

  • Topic--Smart Animal Husbandry Key Technologies and Equipment
    YANG Liang, XIONG Benhai, WANG Hui, CHEN Ruipeng, ZHAO Yiguang
    Smart Agriculture. 2022, 4(2): 86-98. https://doi.org/10.12133/j.smartag.SA202204001

    The production mode of livestock breeding has changed from extensive to intensive, and the production level is improved. However, low labor productivity and labor shortage have seriously restricted the rapid development of China's livestock breeding industry. As a new intelligent agricultural machinery equipment, agricultural robot integrates advanced technologies, such as intelligent monitoring, automatic control, image recognition technology, environmental modeling algorithm, sensors, flexible execution, etc. Using modern information and artificial intelligence technology, developing livestock feeding and pushing robots, realizing digital and intelligent livestock breeding, improving livestock breeding productivity are the main ways to solve the above contradiction. In order to deeply analyze the research status of robot technology in livestock breeding, products and literature were collected worldwide. This paper mainly introduced the research progress of livestock feeding robot from three aspects: Rail feeding robot, self-propelled feeding robot and pushing robot, and analyzed the technical characteristics and practical application of feeding robot.The rail feeding robot runs automatically along the fixed track, identifies the target animal, positions itself, and accurately completes feed delivery through preset programs to achieve accurate feeding of livestock. The self-propelled feeding robot can walk freely in the farm and has automatic navigation and positioning functions. The system takes single chip microcomputer as the control core and realizes automatic walking by sensor and communication module. Compared with the rail feeding robot, the feeding process is more flexible, convenient and technical, which is more conducive to the promotion and application of livestock farms. The pushing robot will automatically push the feed to the feeding area, promote the increase of feed intake of livestock, and effectively reduce the labor demand of the farm. By comparing the feeding robots of developed countries and China from two aspects of technology and application, it is found that China has achieved some innovation in technology, while developted countries do better in product application. The development of livestock robot was prospected. In terms of strategic planning, it is necessary to keep up with the international situation and the trend of technological development, and formulate the agricultural robot development strategic planning in line with China's national conditions. In terms of the development of core technologies, more attention should be paid to the integration of information perception, intelligent sensors and deep learning algorithms to realize human-computer interaction. In terms of future development trends, it is urgent to strengthen innovation, improve the friendliness and intelligence of the robot, and improve the learning ability of the robot. To sum up, intelligent livestock feeding and pushing machine operation has become a cutting-edge technology in the field of intelligent agriculture, which will surely lead to a new round of agricultural production technology reform, promote the transformation and upgrading of China's livestock industry. .

  • Intelligent Management and Control
    ZHUANG Jiayu, XU Shiwei, LI Yang, XIONG Lu, LIU Kebao, ZHONG Zhiping
    Smart Agriculture. 2022, 4(2): 174-182. https://doi.org/10.12133/j.smartag.SA202203013

    To further improve the simulation and estimation accuracy of the supply and demand process of agricultural products, a large number of agricultural data at the national and provincial levels since 1980 were used as the basic research sample, including production, planted area, food consumption, industrial consumption, feed consumption, seed consumption, import, export, price, GDP, population, urban population, rural population, weather and so on, by fully considering the impact factors of agricultural products such as varieties, time, income and economic development, a multi-agricultural products supply and demand forecasting model based on long short-term memory neural network (LSTM) was constructed in this study. The general thought of supply and demand forecasting model is packaging deep neural network training model as an I/O-opening modular model, reserving control interface for input of outside data, and realizing the indicators forecasting of supply and demand and matrixing of balance sheet. The input of model included forecasting balance sheet data of agricultural products, annual price data, general economic data, and international currency data since 2000. The output of model was balance sheet data of next decade since forecasting time. Under the premise of fully considering the mechanical constraints, the model used the advantages of deep learning algorithms in nonlinear model analysis and prediction to analyze and predict supply and demand of 9 main types of agricultural products, including rice, wheat, corn, soybean, pork, poultry, beef, mutton, and aquatic products. The production forecast results of 2019-2021 based on this model were compared and verified with the data published by the National Bureau of Statistics, and the mean absolute percentage error was 3.02%, which meant the average forecast accuracy rate of 2019-2021 was 96.98%. The average forecast accuracy rate was 96.10% in 2019, 98.26% in 2020, and 96.58% in 2021, which shows that with the increase of sample size, the prediction effect of intelligent learning model would gradually get better. The forecasting results indicate that the multi-agricultural supply and demand prediction model based on LSTM constructed in this study can effectively reflect the impact of changes in hidden indicators on the prediction results, avoiding the uncontrollable error introduced by manual experience intervention. The model can provide data production and technical support such as market warning, policy evaluation, resource management and public opinion analysis for agricultural production and management and macroeconomic regulation, and can provide intelligent technical support for multi-regional and inter-temporal agricultural outlook work by monitoring agricultural operation data in a timely manner.

  • Topic--Smart Animal Husbandry Key Technologies and Equipment
    KANG Xi, LIU Gang, CHU Mengyuan, LI Qian, WANG Yanchao
    Smart Agriculture. 2022, 4(2): 1-18. https://doi.org/10.12133/j.smartag.SA202204005

    Realizing the construction of intelligent farming by using advanced information technology, thus improving the living welfare of dairy cows and the economic benefits of dairy farms has become an important goal and task in dairy farming research field. Computer vision technology has the advantages of non-contact, stress-free, low cost and high throughput, and has a broad application prospect in animal production. On the basis of describing the importance of computer vision technology in the development of intelligent farming industry, this paper introduced the cutting-edge technology of cow physiological parameters and disease diagnosis based on computer vision, including cow temperature monitoring, body size monitoring, weight measurement, mastitis detection and lameness detection. The introduction coverd the development process of these studies, the current mainstream techniques, and discussed the problems and challenges in the research and application of related technology, aiming at the problem that the current computer vision-based detection methods are susceptible to individual difference and environmental changes. Combined with the development status of farming industry, suggestions on how to improve the universality of computer vision technology in intelligent farming industry, how to improve the accuracy of monitoring cows' physiological parameters and disease diagnosis, and how to reduce the influence of environment on the system were put forward. Future research work should focus on research and developmentof algorithm, make full use of computer vision technology continuous detection and the advantage of large amount of data, to ensure the accuracy of the detection, and improve the function of the system integration and data utilization, expand the computer vision system function. Under the premise that does not affect the ability of the system, to improve the study on the number of function integration and system function and reduce equipment costs.

  • Topic--Smart Animal Husbandry Key Technologies and Equipment
    XIONG Benhai, ZHAO Yiguang, LUO Qingyao, ZHENG Shanshan, GAO Huajie
    Smart Agriculture. 2022, 4(2): 110-120. https://doi.org/10.12133/j.smartag.SA202205003

    The shortage of feed grain is continually worsening in China, which leads to the transformation of feed grain security into national food security. Therefore, comprehensively integrating the basic data resources of feed nutrition and improving the nutritional value of all available feed resources will be one of the key technical strategies to ensure national food security in China. In this study, based on the description specification and attribute data standard of 16 categories of Chinese feed raw materials, more than 500,000 pieces of data on the types, spatial distribution, chemical composition and nutritional value characteristics of existing feed resources, which were accumulated through previous projects from the sixth Five-Year Plan to the thirteenth Five-Year Plan period, were digitally collected, recorded, categorized and comprehensively analyzed. By using MySQL relational database technology and PHP program, a new generation of feed nutrition big data online platform (http://www.chinafeeddata.org.cn/) was developed and web data sharing service was provided as well. First of all, the online platform provided visual analysis of all warehousing data, which could realize the visual comparison of a single or multiple feed nutrients in various graphic forms such as scatter diagram, histogram, curve line and column chart. By using two-dimensional code technology, all feed nutrition attribute data and feed entity sample traceability data could be shared and downloaded remotely in real-time on mobile phones. Secondly, the online platform also incorporated various regression models for prediction of feed effective nutrient values using readily available feed chemical composition in the datasets, providing dynamic analysis for feed raw material nutrient variation. Finally, based on Geographic Information System technology, the online platform integrated the data of feed chemical composition and major mineral element concentrations with their geographical location information, which was able to provide the distribution query and comparative analysis of the geographic information map of the feed raw material nutrition data at both provincial and national level. Meanwhile, the online platform can also provide a download service of the various datasets, which brought convenience to the comprehensive application of existing feed nutrition data. This research also showed that expanding feed resource data and providing prediction and analysis models of feed effective nutrients could maximize the utilization of the existing feed nutrition data. After embedding online calculation modules of various feed formulation software, this platform would be able to provide a one-stop service and optimize the utilization of the feed nutrition data.

  • Topic--Smart Animal Husbandry Key Technologies and Equipment
    LI Jiawei, MA Weihong, LI Qifeng, XUE Xianglong, WANG Zhiquan
    Smart Agriculture. 2022, 4(2): 64-76. https://doi.org/10.12133/j.smartag.SA202206003

    Non-contact measurement based on the point cloud acquisition technology is able to alleviate the stress responses among beef cattle while collecting core body dimension data, but the current 3D data collection for beef cattle is usually time-consuming and easily influenced by the environment, which is in fact inapplicable to the actual breeding environment. In order to overcome the difficulty in obtaining the complete beef cattle point clouds, a non-contact phenotype data acquisition equipment was developed with a 3D reconstruction function, which can provide a large amount of standardized 3D quantitative phenotype data for beef cattle breeding and fattening process. The system is made up of a Kinect DK depth camera, an infrared grating trigger, and an Radio Frequency Identification (RFID) trigger, which enables the multi-angle instantaneous acquisition of beef cattle point clouds when the beef cattle pass through the walkway. The point cloud processing algorithm was developed based on the C++ platform and Point Cloud Library (PCL), and 3D reconstruction of beef cattle point clouds was achieved through spatial and outlier point filtering, Random Sample Consensus (RANSAC) shape fitting, point cloud thinning, and perceptual box filtering based on the dimensionality reduction density clustering to effectively filter out the interference, such as noises from the railings close to the beef cattle, without destroying the integrity of the point clouds. In the present work, a total of 124 sets of point clouds were successfully collected from 20 beef cattles on the actual farm using this system, and the target extraction experiments were completed. Notably, the beef cattle passed through the walkway in a natural state without any intervention during the whole data collection process. The experimental results showed that the acquisition success rate of this device was 91.89%. The coordinate system of the collected point cloud was consistent with the real situation and the body dimension reconstruction error was 0.6%. This device can realize the automatic acquisition and 3D reconstruction of beef cattle point cloud data from multiple angles without human intervention, and can automatically extract the target beef cattle point clouds from a complex environment. The point cloud data collected by this system help to restore the body size and shape of beef cattle, thereby provide solid support for the measurement of core parameters such as body height, body width, body oblique length, chest circumference, abdominal circumference, and body weight.

  • Topic--Smart Animal Husbandry Key Technologies and Equipment
    ZHANG Kai, HAN Shuqing, CHENG Guodong, WU Saisai, LIU Jifang
    Smart Agriculture. 2022, 4(2): 53-63. https://doi.org/10.12133/j.smartag.SA202204003

    The gait phase of dairy cows is an important indicator to reflect the severity of lameness. IThe accuracy of available gait segmentation methods was not enough for lameness detection. In this study, a gait phase recognition method based on Gaussian mixture model (GMM) and hidden Markov model (HMM) was proposed and tested. Firstly, wearable inertial sensors LPMS-B2 were used to collect the acceleration and angular velocity signals of cow hind limbs. In order to remove the noise of the system and restore the real dynamic data, Kalman filter was used for data preprocessing. The first-order difference of the angular velocity of the coronal axis was selected as the eigenvalue. Secondly, to analyze the long-term continuous recorded gait sequences of dairy cows, the processed data was clustered by GMM in the unsupervised way. The clustering results were taken as the input of the HMM, and the gait phase recognition of dairy cows was realized by decoding the observed data. Finally, the cow gait was segmented into 3 phases, including the stationary phase, standing phase and swing phase. At the same time, gait segmentation was achieved according to the standing phase and swing phase. The accuracy, recall rate and F1 of the stationary phase were 89.28%, 90.95% and 90.91%, respectively. The accuracy, recall rate and F1 of the standing phase recognition in continuous gait were 91.55%, 86.71% and 89.06%, respectively. The accuracy, recall rate and F1 of the swing phase recognition in continuous gait were 86.67%, 91.51% and 89.03%, respectively. The accuracy of cow gait segmentation was 91.67%, which was 4.23% and 1.1 % higher than that of the event-based peak detection method and dynamic time warping algorithm, respectively. The experimental results showed that the proposed method could overcome the influence of the cow's walking speed on gait phase recognition results, and recognize the gait phase accurately. This experiment provides a new method for the adaptive recognition of the cow gait phase in unconstrained environments. The degree of lameness of dairy cows can be judged by the gait features.

  • Topic--Smart Animal Husbandry Key Technologies and Equipment
    JI Nan, YIN Yanling, SHEN Weizheng, KOU Shengli, DAI Baisheng, WANG Guowei
    Smart Agriculture. 2022, 4(2): 19-35. https://doi.org/10.12133/j.smartag.SA202204004

    Pig welfare is closely related to the economical production of pig farms. With regard to pig welfare assessment, pig sounds are significant indicators, which can reflect the quality of the barn environment, the physical condition and the health of pigs. Therefore, pig sound analysis is of high priority and necessary. In this review, the relationship between pig sound and welfare was analyzed. Three kinds of pig sounds are closely related to pig welfare, including coughs, screams, and grunts. Subsequently, both wearable and non-contact sensors were briefly described in two aspects of advantages and disadvantages. Based on the advantages and feasibility of microphone sensors in contactless way, the existing techniques for processing pig sounds were elaborated and evaluated for further in-depth research from three aspects: sound recording and labeling, feature extraction, and sound classification. Finally, the challenges and opportunities of pig sound research were discussed for the ultimate purpose of precision livestock farming (PLF) in four ways: concerning sound monitoring technologies, individual pig welfare monitoring, commercial applications and pig farmers. In summary, it was found that most of the current researches on pig sound recognition tasks focused on the selection of classifiers and algorithm improvement, while fewer research was conducted on sound labeling and feature extraction. Meanwhile, pig sound recognition faces some challenging problems, involving the difficulty in obtaining the audio data from different pig growth stages and verifying the developed algorithms in a variety of pig farms. Overall, it is suggested that technologies involved in the automatic identification process should be explored in depth. In the future, strengthen cooperation among cross-disciplinary experts to promote the development and application of PLF is also nessary.

  • Overview Article
    HUANG Zichen, SUGIYAMA Saki
    Smart Agriculture. 2022, 4(2): 135-149. https://doi.org/10.12133/j.smartag.SA202202008

    Intelligent equipment is necessary to ensure stable, high-quality, and efficient production of facility agriculture. Among them, intelligent harvesting equipment needs to be designed and developed according to the characteristics of fruits and vegetables, so there is little large-scale mechanization. The intelligent harvesting equipment in Japan has nearly 40 years of research and development history since the 1980s, and the review of its research and development products has specific inspiration and reference significance. First, the preferential policies that can be used for harvesting robots in the support policies of the government and banks to promote the development of facility agriculture were introduced. Then, the development of agricultural robots in Japan was reviewed. The top ten fruits and vegetables in the greenhouse were selected, and the harvesting research of tomato, eggplant, green pepper, cucumber, melon, asparagus, and strawberry harvesting robots based on the combination of agricultural machinery and agronomy was analyzed. Next, the commercialized solutions for tomato, green pepper, and strawberry harvesting system were detailed and reviewed. Among them, taking the green pepper harvesting robot developed by the start-up company AGRIST Ltd. in recent years as an example, the harvesting robot developed by the company based on the Internet of Things technology and artificial intelligence algorithms was explained. This harvesting robot can work 24 h a day and can control the robot's operation through the network. Then, the typical strawberry harvesting robot that had undergone four generations of prototype development were reviewed. The fourth-generation system was a systematic solution developed by the company and researchers. It consisted of high-density movable seedbeds and a harvesting robot with the advantages of high space utilization, all-day work, and intelligent quality grading. The strengths, weaknesses, challenges, and future trends of prototype and industrialized solutions developed by universities were also summarized. Finally, suggestions for accelerating the development of intelligent, smart, and industrialized harvesting robots in China's facility agriculture were provided.

  • Topic--Smart Animal Husbandry Key Technologies and Equipment
    CHEN Zhanqi, ZHANG Yu'an, WANG Wenzhi, LI Dan, HE Jie, SONG Rende
    Smart Agriculture. 2022, 4(2): 77-85. https://doi.org/10.12133/j.smartag.SA202201001

    Identifying of yak is indispensable for individual documentation, behavior monitoring, precise feeding, disease prevention and control, food traceability, and individualized breeding. Aiming at the application requirements of animal individual identification technology in intelligent informatization animal breeding platforms, a yak face recognition algorithm based on transfer learning and multiscale feature fusion, i.e., transfer learning-multiscale feature fusion-VGG(T-M-VGG) was proposed. The sample data set of yak facial images was produced by a camera named GoPro HERO8 BLACK. Then, a part of dataset was increased by the data enhancement ways that involved rotating, adjusting the brightness and adding noise to improve the robustness and accuracy of model. T-M-VGG, a kind of convolutional neural network based on pre-trained visual geometry group network and transfer learning was input with normalized dataset samples. The feature map of Block3, Block4 and Block5 were considered as F3, F4 and F5, respectively. What's more, F3 and F5 were taken by the structure that composed of three parallel dilated convolutions, the dilation rate were one, two and three, respectively, to dilate the receptive filed which was the map size of feature map. Further, the multiscale feature maps were fused by the improved feature pyramid which was in the shape of stacked hourglass structure. Finally, the fully connected layer was replaced by the global average pooling to classify and reduce a large number of parameters. To verify the effectiveness of the proposed model, a comparative experiment was conducted. The experimental results showed that recognition accuracy rate in 38,800 data sets of 194 yaks reached 96.01%, but the storage size was 70.75 MB. Twelve images representing different yak categories from dataset were chosen randomly for occlusion test. The origin images were masked with different shape of occlusions. The accuracy of identifying yak individuals was 83.33% in the occlusion test, which showed that the model had mainly learned facial features. The proposed algorithm could provide a reference for research of yak face recognition and would be the foundation for the establishment of smart management platform.

Mobile