Analysis of Flavonoid Metabolism in Different Cultivated Pepino Fruits Based on Transcriptome and Metabolome
Cheng SI, Shipeng YANG, Zhu SUN, Guangnan ZHANG, Qiwen ZHONG
Analysis of Flavonoid Metabolism in Different Cultivated Pepino Fruits Based on Transcriptome and Metabolome
In order to understand the main flavonoids and the key synthase genes related to flavonoids and clarify the differences of flavonoids among different pepino.Combined metabolomic and transcriptomic analyses were carried out with the mature pepino(LOF and SRF)currently main cultivars in China.The results showed that 9 kinds of secondary metabolites and 41 kinds of tertiary metabolites were identified,and the flavonols content was the highest.There were 21 metabolites with significant differences in flavonoid components,which were distributed in 6 secondary metabolites such as flavanols,flavonoid carbonoside.The total content of dihydroflavonol,flavanols and isoflavones was higher in the Light-oval fruit(LOF)than in the Sweet-round fruit(SRF),while other compounds including flavonols were higher in the SRF.A total of 503 genes related to flavonoid synthesis were identified by RNA-seq analysis,the expression of Phenylalanine ammonia-lyase(PAL),Cinnamyl alcohol dehydrogenase(CAD),and Flavanone-3-Hydroxylase(F3H)which were key genes for upstream stage of the whole process of pepino flavonoid synthesis,were all up-regulated in LOF compared to SRF.Flavonol synthase gene expression was consistently higher in SRF than LOF.According to the result of transcriptome,the expressed trend of 4 flavonoid synthases agreed with the testing by the RT-PCR.The results showed that a large number of flavonoid compounds and their synthase genes were present in different cultivars of pepino.However,the content of different flavonoid components and the activities of enzymes related to its assimilation and is varied among different resources.
Pepino / Flavonoids / Transcriptome / Metabolome {{custom_keyword}} /
Tab.1 The qRT-PCR primers for the 4 selected genes表1 荧光定量PCR分析的4个基因的引物 |
编码ID Code ID | 基因名称 Gene name | 引物序列(5'—3') Primer sequences | |
---|---|---|---|
F | R | ||
Cluster-1244.24547 | PAL | TGAAATCGCTATGGCCTCGT | TTTCAATATGTCAACTGCCTCC |
Cluster-1244.48177 | PAL | TGATGTTTGCACAATTCTCC | TTTGCCAAGAATTGAAGCTC |
Cluster-1244.48397 | F3H | CAACTATTTTGCCTGCTTC | GTATTCTTCACATGCCTCC |
Cluster-1244.16099 | FLS | TTACACTAGGATTGCCACCAC | TCTGCCATTGTTTTCATCTCG |
Cluster-1244.3348 | CAD | GATTCCTACATACAACGGCTA | AGTAATTCCAGCACATAACAGG |
Cluster-2666.0 | CAD | GCTACTCGGACATAATTGTTG | TTGTAATTCCAGCACAAAGCA |
内参基因Actin | GAACCGGAGCAGGTGAAGAA | GAAGCAATCCCAGCGATACG |
Tab.2 Specific composition,quantity and content of different metabolites in SRF and LOF of pepino sativus cultivars表2 不同香瓜茄栽培种果实中不同代谢产物具体成分、数量及含量 |
一级代谢产物 Primary metabolites | 数量 Quantity | 相对含量 Relative content | |
---|---|---|---|
LOF | SRF | ||
氨基酸及其衍生物 Amino acid and its derivatives | 60 | 3.20E+08 | 2.34E+08 |
酚酸类 Phenolic acids | 70 | 3.76E+08 | 4.33E+08 |
核苷酸及其衍生物 Nucleotide and its derivates | 34 | 1.67E+08 | 8.58E+07 |
类黄酮 Flavonoids | 41 | 1.15E+07 | 3.06E+07 |
醌类 Quinones | 1 | 6.14E+03 | 3.62E+05 |
木脂素和香豆素 Lignans and coumarins | 12 | 4.06E+06 | 2.65E+07 |
生物碱 Alkaloids | 44 | 2.14E+08 | 1.98E+08 |
萜类 Terpene | 1 | 1.19E+05 | 7.56E+04 |
有机酸 Organic acids | 27 | 1.41E+08 | 1.73E+08 |
脂质 Lipid | 68 | 8.66E+08 | 6.01E+08 |
其他 Others | 44 | 7.63E+07 | 7.22E+07 |
Tab.3 Flavonoids in SRF and LOF of pepino cultivars表3 不同香瓜茄栽培种果实中类黄酮化合物组分和含量 |
编码 Code | 化合物 Chemical compound | 二级代谢产物 Secondary metabolites | 相对含量 Relative content | VIP | |
---|---|---|---|---|---|
LOF | SRF | ||||
pmp000550 | 毛蕊黄酮苷 | 异黄酮 | 2.65E+04 | 1.69E+04 | |
mws0024 | 没食子酸 | 黄烷醇类 | 8.42E+03 | 1.22E+04 | |
mws0034 | 表没食子儿茶素没食子酸酯* | 9.89E+03 | 4.91E+03 | 1.24E+00 | |
mws0351 | 没食子儿茶没食子酸酯 | 1.12E+04 | 5.94E+03 | ||
mws2220 | 没食子儿茶素没食子酸酯* | 1.44E+04 | 7.15E+03 | 1.16E+00 | |
mws2221 | 儿茶素没食子酸酯* | 6.18E+03 | 2.03E+03 | 1.36E+00 | |
pme0309 | 没食子酸甲酯 | 3.64E+03 | 3.05E+03 | ||
pmb0618 | 8-C-己糖基-橙皮素 O-己糖苷* | 黄酮碳糖苷 | 2.94E+03 | 1.71E+04 | 1.14E+00 |
pmb0645 | 6-C-己糖基-橙皮素 O-己糖苷 | 2.70E+04 | 2.53E+05 | ||
pmb0647 | 8-C-己糖基-木犀草素 O-戊糖苷* | 7.75E+02 | 9.99E+03 | 1.30E+00 | |
pmp000410 | 葛根素芹菜糖苷* | 1.51E+03 | 6.62E+03 | 1.27E+00 | |
mws0059 | 芦丁* | 黄酮醇 | 1.19E+04 | 8.06E+05 | 1.15E+00 |
mws1329 | 槲皮素-7-O-葡萄糖苷* | 5.18E+04 | 1.42E+05 | 1.11E+00 | |
mws4183 | 槲皮素-3-O-Alpha-L-吡喃阿拉伯糖苷 | 7.91E+02 | 2.28E+03 | ||
pmb3894 | 3,7-二氧-甲基槲皮素* | 5.43E+06 | 3.08E+05 | 1.35E+00 | |
pme1540 | 异鼠李素-3-O-新橙皮糖苷 | 2.76E+03 | 2.91E+04 | ||
pme3211 | 异槲皮甙* | 5.40E+04 | 1.69E+05 | 1.19E+00 | |
pmn001583 | 槲皮素-3-O-刺槐甙* | 1.47E+04 | 1.00E+06 | 1.16E+00 | |
pmn001642 | 山柰酚3-O-β-(2″-O-乙酰基-β-D-葡萄糖醛酸) | 5.27E+06 | 3.55E+06 | ||
pmp001309 | 6-羟基山柰酚-7-O-葡萄糖苷* | 1.05E+04 | 1.78E+06 | 1.21E+00 | |
pmp001310 | 6-羟基山柰酚-3,6-O-二葡萄糖苷* | 1.04E+05 | 2.15E+07 | 1.21E+00 | |
pmp001312 | 6-羟基山柰酚-3,7,6-O-三葡萄糖苷* | 1.89E+03 | 3.67E+04 | 1.10E+00 | |
pmp001314 | 6-羟基山柰酚-3-O-芸香糖-6-O-葡萄糖苷* | 9.32E+02 | 8.01E+04 | 1.17E+00 | |
mws0043 | 川陈皮素 | 黄酮 | 3.12E+04 | 2.74E+04 | |
pmb0588 | 木犀草素 3',7-二氧葡萄糖苷* | 4.28E+03 | 3.11E+04 | 1.22E+00 | |
pmb0665 | 木犀草素 8-C-己糖苷-O-己糖苷* | 2.28E+03 | 8.99E+04 | 1.12E+00 | |
pmb0725 | 麦黄酮 7-O-阿魏酰己糖苷 | 2.44E+04 | 1.13E+05 | ||
pmb1108 | 木犀草素 6-C-己糖基 8-C-己糖基-O-己糖苷 | 1.65E+03 | 3.04E+03 | ||
pmb2968 | 金圣草黄素 C-己糖基-O-己糖苷 | 8.05E+03 | 7.79E+03 | ||
pmp000001 | 高车前素* | 5.98E+02 | 1.99E+03 | 1.06E+00 | |
pmp000593 | 木犀草素-7-O-芸香糖苷 | 3.75E+04 | 6.81E+03 | ||
mws0170 | 氯化矢车菊素,氯化氰定 | 花青素 | 1.27E+03 | 1.09E+04 | |
pmb2957 | 矢车菊素 O-丁香酸 | 1.83E+05 | 3.08E+05 | ||
mws0914 | 短叶松素 | 二氢黄酮醇 | 7.54E+02 | 2.68E+04 | |
pmb2979 | 橙皮素 O-丙二酰基己糖苷* | 2.36E+04 | 1.03E+05 | 1.07E+00 | |
mws0064 | 圣草酚* | 二氢黄酮 | 6.23E+04 | 3.97E+03 | 1.26E+00 |
mws1033 | 高圣草酚* | 8.87E+03 | 3.07E+03 | 1.01E+00 | |
pme0376 | 柚皮素 | 5.71E+02 | 2.66E+04 | ||
pmp001075 | 橙皮素 | 查尔酮 | 5.29E+02 | 9.76E+03 | |
mws1140 | 4,2',4',6'-四羟基查尔酮 | 8.49E+02 | 2.81E+04 | ||
pme2960 | 柚皮苷查尔酮 | 8.03E+02 | 7.36E+04 |
注:差异显著的基因右上角用*表示;差异基因界定为VIP>1。 | |
Note: Significantly different genes are indicated by * in the upper right corner; Significantly different genes are defined as VIP>1. |
Tab.4 Annotated genes in different databases表4 香瓜茄果实转录组组装与注释信息 |
数据库 Database | 基因数量 Number of genes | 百分比/% Percentage |
---|---|---|
Total Unigenes | 114 278 | 100.00 |
Annotated in at least one Database | 87 150 | 76.26 |
Trembl | 86 353 | 75.56 |
NR | 83 408 | 72.99 |
GO | 67 221 | 58.82 |
KEGG | 65 017 | 56.89 |
Pfam | 58 299 | 51.02 |
Swiss-prot | 54 652 | 47.82 |
KOG | 48 878 | 42.77 |
Fig.2 Scatter plot of KEGG enrichment of DEG between two pepino cultivarsThe enrichment degree of KEGG is measured by rich factor enrichment factor(the ratio of the number of differentially-expressed genes enriched in the pathway to the number of annotation genes),q value and the number of genes enriched in this pathway.The larger the rich factor,the greater the degree of enrichment.The smaller q value,the more significant enrichment.We selected the 20 path entries with the most significant enrichment to show in the figure.图2 不同香瓜茄栽培种果实DEG的KEGG富集散点图 KEGG富集程度通过富集因子(该pathway中富集到的差异基因个数与注释基因个数的比值)、q值和富集到此通路上的基因个数来衡量。富集因子越大,表示富集的程度越大。q值越小,富集越显著。挑选富集最显著的20条pathway条目在该图中进行展示。 |
Fig.5 Combined analysis of flavonoid metabolites and key genes of metabolic pathways in fruits of different pepino cultivarsThe column chart next to each metabolite shows the increase or decrease of metabolites in the fruits of two pepino cultivars;each box represents the expression difference of related genes based on different pepino cultivars.图5 不同香瓜茄栽培种果实类黄酮代谢物及代谢通路关键基因联合分析 每个代谢物旁边的柱形图表明代谢物在2个香瓜茄栽培种果实中增加或减少的水平;每个方块代表了基于不同香瓜茄栽培种中相关基因的表达差异。 |
Tab.5 qRT-PCR analysis of 4 differential expressed genes in two pepino cultivars表5 荧光定量PCR分析香瓜茄中4个差异表达基因 |
基因 Genes | 编码ID Code ID | 转录组测序表达量(FPKM) Transcriptome sequencing expression | |
---|---|---|---|
LOF | SRF | ||
PAL | Cluster-1244.24547 | 34.53 | 8.21 |
PAL | Cluster-1244.48177 | 20.86 | 2.62 |
F3H | Cluster-1244.48397 | 263.16 | 85.37 |
FLS | Cluster-1244.16099 | 2.37 | 7.98 |
CAD | Cluster-1244.3348 | 0.46 | 5.38 |
CAD | Cluster-2666.0 | 0.00 | 7.57 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
许倩倩. 香瓜茄有效成分分离纯化及其活性研究[D]. 上海: 上海海洋大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
周萌, 李明, 丁新华, 李晓明, 储昭辉. 不同番茄品种中类黄酮和咖啡酰奎尼酸含量测定及与抗氧化能力相关分析[J]. 核农学报, 2014, 28(4):662-669.doi:10.11869/j.issn.100-8551.2014.04.0662.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
刘素军, 蒙美莲, 陈有君. 干旱胁迫及复水对马铃薯类黄酮合成途径中关键酶及基因表达的影响[J]. 植物生理学报, 2018, 54(1):81-91.doi:10.13592/j.cnki.ppj.2017.0191.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
陈帅. 烟草类黄酮代谢途径中关键酶CHS基因与R2R3 MYB类转录抑制因子功能研究[D]. 雅安: 四川农业大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
严苓方, 杨晓梦, 杜娟, 孙正海, 普晓英, 杨加珍, 曾亚文. 大麦籽粒苯丙氨酸含量QTL初步定位分析[J]. 麦类作物学报, 2021, 41(7):851-856.doi:10.7606/j.issn.1009-1041.2021.07.08.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
陈蒙, 张雪, 张宇, 杨铭慧, 刘海峰. 山葡萄苯丙氨酸解氨酶基因(PAL)的克隆与表达分析[J]. 华北农学报, 2018, 33(6): 64-71. doi: 10.7668/hbnxb.2018.06.009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
乔枫, 耿贵工, 张丽, 金兰, 陈志. 枸杞苯丙氨酸解氨酶基因的克隆与表达分析[J]. 中国农业大学学报, 2017, 22(12):64-73.doi:10.11841/j.issn.1007-4333.2017.12.08.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
李永华, 蒲天珍, 周佩娜, 方佳慧, 张秀桥, 龚玲. 大叶蛇葡萄类黄酮-3'-羟化酶基因(F3'H)的克隆及生物信息学分析[J]. 分子植物育种, 2021, 19(18):5984-5993.doi:10.13271/j.mpb.019.005984.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |