Effects of Increasing Plant Density on Photosynthetic Characteristics of Canopy and Establishment of Grain Sink at Anthesis in Maize
Yibo WU, Zheng GONG, Xiling CHANG, Jianqiang SUN, Yangyang LI, Huihui LIU, Youhong SONG
Effects of Increasing Plant Density on Photosynthetic Characteristics of Canopy and Establishment of Grain Sink at Anthesis in Maize
In order to clarify the characteristics of the effect of increasing plant density on the source-sink relationship of maize,ZD958 and JQ119 were chosen as the experimental materials,and five different planting densities (45 000,60 000,75 000,90 000 and 120 000 plants/ha) were set to explore the response characteristics and changes of plant morphology,leaf canopy photosynthetic characteristics and establishment of grain sink of different hybrids at anthesis of maize to increase plant density. The results showed that with the increase of plant density,plant height,ear height and ear coefficient increased significantly. The basal intersegmental diameter Ⅲ,the extinction coefficient (k),the leaf area per plant and the ear leaf area of maize were significantly decreased,and the net photosynthetic rate of ear leaf,photosynthetic capacity of ear leaf and kernel number per ear were the same as above. The effects of increasing of plant density on different maize hybrids were generally consistent. When plant density was increased from 45 000 to 120 000 plants/ha,the ear leaf area decreased by 20.63% and 12.30%,the photosynthetic capacity of ear leaf decreased by 33.76% and 33.31%,and the kernel number per ear decreased by 21.55% and 36.07%for ZD958 and JQ119,respectively.The linear relationship between photosynthetic capacity of ear leaf,kernel number per ear and plant density was further established. The linear relationship showed that for every 1×104 plants/ha increase in plant density,the photosynthetic capacity of ear leaf of ZD958 decreases by 0.076 μmol/s and the kernel number per ear by 13.03,while the photosynthetic capacity of ear leaf of JQ119 decreases by 0.088 μmol/s and the kernel number per ear by 27.93.From the linear slope,compared with ZD958,JQ119's leaf source and grain sink were more sensitive to increasing plant density,and the difference between the two hybrids was mainly manifested in the establishment of grain sink. In addition,this linear model can be applied to the simulation and prediction of maize canopy photosynthetic characteristics and grain sink establishment by increasing plant density,which can provide reference for moderately increased plant density for high yield of maize.In summary,enhancing the source and expanding the sink is the key to increasing yield in summer maize under increasing plant density.
Zea mays L. / Planting density / Photosynthetic characteristics / Grain number / Source-sink relationship {{custom_keyword}} /
Tab.1 Effect of increasing plant density on plant morphological characteristics at anthesis in summer maize表1 增密对夏玉米植株形态特征的影响 |
品种 Hybrids | 种植密度 Plant density | 株高/cm Plant height | 穗位高/cm Ear height | 穗位系数 Ear height coefficient | 基部第Ⅲ节间 直径/mm Basal intersegmental diameter Ⅲ | 穗位叶面积/ cm2 Leaf area of ear leaf | 单株叶面积/ cm2 Leaf area per plant |
---|---|---|---|---|---|---|---|
ZD958 | PD4.5 | 192.42±4.39d | 58.86±1.58c | 0.306±0.008c | 23.49±0.66a | 526.47±24.23a | 4 875.3±151.8a |
PD6 | 200.48±1.29c | 64.56±1.43b | 0.322±0.008b | 21.83±0.29b | 493.90±20.03ab | 4 264.5±44.3b | |
PD7.5 | 203.22±1.67bc | 66.30±0.82b | 0.326±0.005b | 20.36±0.60c | 466.55±29.44bc | 4 152.7±29.9c | |
PD9 | 206.14±1.47ab | 72.96±2.44a | 0.354±0.010a | 19.93±0.52cd | 438.14±24.82cd | 3 948.4±31.8d | |
PD12 | 208.38±1.20a | 75.06±1.59a | 0.360±0.009a | 19.20±0.62d | 417.85±32.06d | 3 826.3±71.6e | |
JQ119 | PD4.5 | 247.42±2.39d | 79.84±3.04e | 0.323±0.010d | 23.34±0.47a | 592.67±29.88a | 5 164.8±28.2a |
PD6 | 253.14±1.29d | 86.46±1.93d | 0.342±0.007c | 22.43±0.35b | 569.91±15.77ab | 5 080.0±17.1b | |
PD7.5 | 263.64±3.11c | 92.54±1.39c | 0.351±0.004bc | 21.58±0.45c | 546.44±33.22bc | 4 946.1±54.8c | |
PD9 | 271.44±4.72b | 98.50±0.70b | 0.363±0.008b | 20.55±0.50d | 542.00±14.50c | 4 860.8±37.7d | |
PD12 | 282.48±10.31a | 108.54±1.05a | 0.385±0.015a | 19.61±0.92e | 519.76±17.39bc | 4 789.7±35.6e | |
差异来源 Source of variation | |||||||
品种Hybrids (H) | ** | ** | ** | ** | ** | ** | |
种植密度 Plant density (PD) | ** | ** | ** | ** | ** | ** | |
品种×种植密度H×PD | ** | ** | * | ns | ns | ** |
注:不同小写字母表示处理间差异显著(P<0.05);**.在 P<0.01 水平上显著,*.在 P<0.05 水平上显著,ns.无显著性(P>0.05)。 | |
Note:Different lowercase letters indicate significant difference among the treatments (P<0.05);**. Significant difference at P<0.01,*. Significant difference at P<0.05,ns. No significant (P>0.05). |
Fig.3 Effects of increasing plant density on net photosynthetic rate of ear leaf at anthesis in summer maize图3 增密对夏玉米开花期穗位叶净光合速率的影响 |
[1] |
国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021.
National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistical Press, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
王禹. 新形势下我国粮食安全保障研究[D]. 北京: 中国农业科学院, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
谷利敏, 乔江方, 张美微, 朱卫红, 黄璐, 代书桃, 董树亭, 刘京宝. 种植密度对不同耐密夏玉米品种茎秆性状与抗倒伏能力的影响[J]. 玉米科学, 2017, 25(5):91-97. doi:10.13597/j.cnki.maize.science.20170515.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
耿文杰, 李宾, 任佰朝, 赵斌, 刘鹏, 张吉旺. 种植密度和喷施乙烯利对夏玉米木质素代谢和抗倒伏性能的调控[J]. 中国农业科学, 2022, 55(2):307-319. doi:10.3864/j.issn.0578-1752.2022.02.006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
傅鹏霄, 王珏, 李广浩, 陆卫平, 陆大雷. 不同栽培模式对江苏省夏玉米产量和氮素利用的影响[J]. 江苏农业学报, 2021, 37(5):1151-1159. doi:10.3969/j.issn.1000-4440.2021.05.009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
赵久然, 陈国平. 不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程的观察[J]. 中国农业科学, 1990, 23(4):28-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
阎忠敏, 廖树华, 张太俊, 周顺利. 玉米穗粒数形成过程模型研究[J]. 玉米科学, 2011, 19(5):114-118. doi:10.13597/j.cnki.maize.science.2011.05.014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
裴文东, 张仁和, 王国兴, 雷文妮, 雷格丽, 高敏, 张宏军. 玉米冠层结构和群体光合特性对增密的响应[J]. 玉米科学, 2020, 28(3):92-98. doi:10.13597/j.cnki.maize.science.20200312.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
李虹桥, 赖莹, 母娜, 严红梅, 汤维群, 蒋小灵, 高雯, 吴永成. 密度对不同株高油菜冠层结构与群体光合能力的影响[J]. 浙江农业学报, 2022, 34(3):419-427. doi:10.3969/j.issn.1004-1524.2022.03.01.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
张春雨, 白晶, 丁相鹏, 张吉旺, 刘鹏, 任佰朝, 赵斌. 错株增密种植对夏玉米光合特性及产量的影响[J]. 中国农业科学, 2020, 53(19):3928-3941. doi:10.3864/j.issn.0578-1752.2020.19.007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响[J]. 中国农业科学, 2017, 50(13):2463-2475. doi:10.3864/j.issn.0578-1752.2017.13.006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
任永峰, 黄琴, 王志敏, 赵沛义, 高宇, 连海飞. 藜麦植株养分积累对源库调节的响应[J]. 华北农学报, 2018, 33(5):151-159. doi:10.7668/hbnxb.2018.05.021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
罗宏海, 张旺锋, 赵瑞海, 韩春丽, 施敏. 种植密度对新疆膜下滴灌棉花群体光合速率、冠层结构及产量的影响[J]. 中国生态农业学报, 2006, 14(4):112-114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
冯汉宇, 王志敏, 孔凡娜, 张敏洁, 周顺利. 基于控制授粉技术的玉米籽粒生育特性与建成机制[J]. 作物学报, 2011, 37(9):1605-1615. doi:10.3724/SP.J.1006.2011.01605.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
王兴才, 杨文钰. 基于间套作弱光胁迫下作物源库协调与产量研究进展[J]. 中国油料作物学报, 2019, 41(2):292-299. doi:10.7505/j.issn.1007-9084.2019.02.019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
蒋强, 康亮, 张晓, 姚一华, 梁琼月, 顾明华, 何冰. 不同施氮水平对木薯源库关系的影响[J]. 西南农业学报, 2016, 29(9):2162-2166. doi:10.16213/j.cnki.scjas.2016.09.026.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
李永松, 陈基旺, 袁帅, 苏雨婷, 崔璨, 蒋艳方, 陈平平, 王晓玉, 易镇邪. 3种化学调控剂对湘南双季超级稻源库关系的影响[J]. 杂交水稻, 2021, 36(1):93-100. doi:10.16267/j.cnki.1005-3956.20200303.063.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
吴含玉, 张雅君, 张旺锋, 王克如, 李少昆, 姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制[J]. 作物学报, 2019, 45(2):248-255. doi:10.3724/SP.J.1006.2019.83042.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响[J]. 作物学报, 2016, 42(12):1864-1872. doi:10.3724/SP.J.1006.2016.01864.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(3):414-422. doi:10.3724/SP.J.1006.2018.00414.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
吕广德, 殷复伟, 王超, 李宁, 钱兆国, 吴科. 不同播种量对小麦泰科麦33干物质积累转运、旗叶光合特性及产量构成的影响[J]. 江苏农业学报, 2021, 37(1):16-28. doi:10.3969/j.issn.1000-4440.2021.01.003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
刘铁宁, 徐彩龙, 谷利敏, 董树亭. 高密度种植条件下去叶对不同株型夏玉米群体及单叶光合性能的调控[J]. 作物学报, 2014, 40(1):143-153. doi:10.3724/SP.J.1006.2014.00143.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8):1871-1883. doi:10.3724/SP.J.1006.2022.13024.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
曹庆军. 春玉米抗茎倒能力评价及其化学调控技术研究[D]. 哈尔滨: 中国科学院, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
刘伟, 吕鹏, 苏凯, 杨今胜, 张吉旺, 董树亭, 刘鹏, 孙庆泉. 种植密度对夏玉米产量和源库特性的影响[J]. 应用生态学报, 2010, 21(7):1737-1743. doi:10.13287/j.1001-9332.2010.0258.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |