Effects of Increasing Plant Density on Photosynthetic Characteristics of Canopy and Establishment of Grain Sink at Anthesis in Maize

Yibo WU, Zheng GONG, Xiling CHANG, Jianqiang SUN, Yangyang LI, Huihui LIU, Youhong SONG

Acta Agric Boreali Sin ›› 2022, Vol. 37 ›› Issue (S1) : 96-102. DOI: 10.7668/hbnxb.20193320
Tillage & Cultivation · Physiology & Biochemistry

Effects of Increasing Plant Density on Photosynthetic Characteristics of Canopy and Establishment of Grain Sink at Anthesis in Maize

Author information +
History +

Abstract

In order to clarify the characteristics of the effect of increasing plant density on the source-sink relationship of maize,ZD958 and JQ119 were chosen as the experimental materials,and five different planting densities (45 000,60 000,75 000,90 000 and 120 000 plants/ha) were set to explore the response characteristics and changes of plant morphology,leaf canopy photosynthetic characteristics and establishment of grain sink of different hybrids at anthesis of maize to increase plant density. The results showed that with the increase of plant density,plant height,ear height and ear coefficient increased significantly. The basal intersegmental diameter Ⅲ,the extinction coefficient (k),the leaf area per plant and the ear leaf area of maize were significantly decreased,and the net photosynthetic rate of ear leaf,photosynthetic capacity of ear leaf and kernel number per ear were the same as above. The effects of increasing of plant density on different maize hybrids were generally consistent. When plant density was increased from 45 000 to 120 000 plants/ha,the ear leaf area decreased by 20.63% and 12.30%,the photosynthetic capacity of ear leaf decreased by 33.76% and 33.31%,and the kernel number per ear decreased by 21.55% and 36.07%for ZD958 and JQ119,respectively.The linear relationship between photosynthetic capacity of ear leaf,kernel number per ear and plant density was further established. The linear relationship showed that for every 1×104 plants/ha increase in plant density,the photosynthetic capacity of ear leaf of ZD958 decreases by 0.076 μmol/s and the kernel number per ear by 13.03,while the photosynthetic capacity of ear leaf of JQ119 decreases by 0.088 μmol/s and the kernel number per ear by 27.93.From the linear slope,compared with ZD958,JQ119's leaf source and grain sink were more sensitive to increasing plant density,and the difference between the two hybrids was mainly manifested in the establishment of grain sink. In addition,this linear model can be applied to the simulation and prediction of maize canopy photosynthetic characteristics and grain sink establishment by increasing plant density,which can provide reference for moderately increased plant density for high yield of maize.In summary,enhancing the source and expanding the sink is the key to increasing yield in summer maize under increasing plant density.

Key words

Zea mays L. / Planting density / Photosynthetic characteristics / Grain number / Source-sink relationship

Cite this article

Download Citations
Yibo WU , Zheng GONG , Xiling CHANG , Jianqiang SUN , Yangyang LI , Huihui LIU , Youhong SONG. Effects of Increasing Plant Density on Photosynthetic Characteristics of Canopy and Establishment of Grain Sink at Anthesis in Maize. Acta Agriculturae Boreali-Sinica. 2022, 37(S1): 96-102 https://doi.org/10.7668/hbnxb.20193320
玉米(Zea mays L.)是我国重要的粮食、饲料和经济作物,所以种植面积大、产量高,譬如2020年玉米总播种面积达4 126.4万hm2,占粮食种植总面积的35.3%,玉米产量达26 066.5万t,占粮食总产量的38.93%[1]。在人口增加、土地资源有限、恶劣天气频发情况下,稳定并提高玉米产量对保障粮食安全具有重要意义[2]。20世纪以来,玉米产量的提高主要源于密度的提升,且增加种植密度是一种经济有效、易于实施的增产措施[3]。有研究表明,增密有利于增加玉米群体生物量,弥补个体生物量的减少,并最终提高产量[4];但是密度过高则会加剧植株对光、水、肥等资源的竞争,群体的扩大不足以补充个体的衰减,最终造成减产,且容易引发倒伏[5-6]。因此,优化玉米种植密度受到了国内外众多学者的关注[6-9]
开花散粉吐丝期是粒数形成的关键时期,也是玉米生长发育对种植密度最为敏感的时期[10-11]。研究表明,种植密度对冠层叶片光合特性与籽粒形成都有影响[6,12]。随着密度的增加,冠层结构受到显著影响,透光率减小,消光系数也随之下降,且叶片形态及生理特性也受到显著影响[12-14]。研究发现,增密对夏玉米穗位叶光合特性有显著影响,密度增加,穗位叶净光合速率降低,影响光合作用的关键酶活也降低[15]。徐宗贵等[16]研究发现,密度增加,穗粒数显著减少,且穗粒数与种植密度呈极显著负相关。Cárcova等[17]的研究表明,增密显著影响玉米吐丝进程,花丝吐出减缓,花粉活力下降,导致开花吐丝不同步,影响籽粒的最终数量。源影响着库的建成,库随源的变化进行调整,最终达到源库平衡,是作物高产形成的重要特征[18];叶片大小及其光合特性决定了叶源的强弱[19],籽粒建成是玉米库特征主要的体现[20]。但目前对于源库关系的研究主要集中于光能[21]、肥料[22]和化调剂[23],且增密对源库如何协调变化的研究较少。因此,研究夏玉米开花吐丝期冠层光合特性和籽粒建成对理解耐密生理与高密栽培指导有重要意义。
本试验选用淮北平原主栽品种郑单958和新培育高产品种金秋119(审定编号:皖玉2016035),设置5个密度,研究增密对开花期植株形态、冠层光合特性、粒库建成的影响,探讨增密对不同株型玉米源库关系的影响特征,以期为黄淮海夏玉米区高产栽培和品种选育提供理论依据。

1 材料和方法

1.1 试验地概况

试验地设在安徽省蒙城县科技示范场(33°9'N,116° 32'E)。夏玉米生育期(2021年6-9月)试验地平均温度及降雨量如图1所示。土壤类型为砂姜黑土,耕层0~20 cm土壤含有机质16.85 g/kg、速效氮101.5 mg/kg、速效磷43.9 mg/kg、速效钾180.0 mg/kg,pH值5.42。
Fig.1 Mean temperature and rainfall during summer maize season in 2021

图1 2021年夏玉米生育期平均温度及降雨量

Full size|PPT slide

1.2 试验设计

本试验采用裂区设计,品种为主区,密度为副区,共设置4.5万,6.0万,7.5万,9.0万,12.0万株/hm2 5个种植密度,记为PD4.5、PD6、PD7.5、PD9、PD12,进行随机区组试验,3次重复。试验于2021年6月5日进行人工点播,9月25日收获,供试材料为紧凑型品种郑单958(ZD958)和半紧凑型品种金秋119(JQ119)。小区面积为12 m×10 m,其中行距均为0.6 m,株距根据密度进行调整,小区间走道宽为1 m。玉米季共施纯氮250 kg/hm2,P2O5和K2O施肥量均为112.5 kg/hm2,氮肥按照1∶1的比例于播种前和大喇叭口期分2次施入,磷、钾肥于播种前全部施入。其他田间管理措施参照常规大田栽培技术措施进行。

1.3 测试项目与方法

1.3.1 植株冠层形态指标

于开花期每处理选取6株长势一致的玉米植株,测定株高、穗位高,计算穗位系数;用ABSOLUTE Digimatic游标卡尺(Mitutoyo公司,日本)测量基部第Ⅲ节间直径。株高为地表到雄穗顶端的长度;穗位高为地表到雌穗着生节的长度;基部第Ⅲ节间直径为其长短轴直径的平均值。
穗位系数=穗位高/株高

1.3.2 叶面积估算

于开花吐丝期每处理选取健壮玉米植株6株,用米尺测量所有叶片的最大叶长、最大叶宽,计算单株叶面积和叶面积指数(LAI)[24]
叶面积=最大叶长×最大叶宽×0.75
叶面积指数=单位面积叶面积/单位土地面积

1.3.3 消光系数

在夏玉米开花期晴朗天气,利用SunScan植物冠层分析仪(Delta-T公司,英国)测定穗位层及底层的光合有效辐射(PAR),重复3次,计算消光系数(k)[25]
k= -ln(τ)LAI
式中:τ为透过冠层的光合有效辐射与冠层顶部入射辐射的比值;LAI为叶面积指数;k为消光系数。

1.3.4 净光合速率与穗位叶光合能力

在夏玉米开花期晴朗天气9:00-12:00,使用Li-6400XT便携式光合仪(Li-Cor公司,美国)测量净光合速率(Pn),计算穗位叶光合能力,重复3次。采用红蓝光源(Li-6200-02BLED),光强设置为2 000 μmol/(m2·s),CO2浓度用缓冲瓶控制。
穗位叶光合能力=穗位叶净光合速率×穗位叶面积

1.3.5 穗粒数

在成熟期,待籽粒出现黑色层后,在各处理随机选取玉米果穗6个,人工脱粒后,调查穗粒数,求其平均值。

1.4 数据处理

通过Excel 2013软件(Microsoft公司,美国)进行数据收集整理,采用SPSS 26软件(IBM公司,美国)进行统计分析,利用Origin 2021b软件(OriginLab公司,美国)进行拟合与绘图。

2 结果与分析

2.1 增密对夏玉米植株形态的影响

表1可知,增密对夏玉米植株形态有极显著影响(P<0.01)。随着密度的增加,夏玉米株高、穗位高和穗位系数均呈现增加趋势,基部第Ⅲ节间直径呈降低趋势。与PD4.5相比,PD7.5条件下,ZD958和JQ119的株高分别增加了10.80,16.22 cm,穗位高分别增加了7.44,12.7 cm,穗位系数增幅分别为6.5%,8.7%;PD12条件下,ZD958和JQ119的株高分别增加了15.96,35.06 cm,穗位高分别增加了16.2,28.7 cm,穗位系数增幅分别为17.6%,19.2%。
Tab.1 Effect of increasing plant density on plant morphological characteristics at anthesis in summer maize

表1 增密对夏玉米植株形态特征的影响

品种
Hybrids
种植密度
Plant density
株高/cm
Plant height
穗位高/cm
Ear height
穗位系数
Ear height
coefficient
基部第Ⅲ节间
直径/mm
Basal intersegmental
diameter Ⅲ
穗位叶面积/
cm2
Leaf area of ear leaf
单株叶面积/
cm2
Leaf area per plant
ZD958 PD4.5 192.42±4.39d 58.86±1.58c 0.306±0.008c 23.49±0.66a 526.47±24.23a 4 875.3±151.8a
PD6 200.48±1.29c 64.56±1.43b 0.322±0.008b 21.83±0.29b 493.90±20.03ab 4 264.5±44.3b
PD7.5 203.22±1.67bc 66.30±0.82b 0.326±0.005b 20.36±0.60c 466.55±29.44bc 4 152.7±29.9c
PD9 206.14±1.47ab 72.96±2.44a 0.354±0.010a 19.93±0.52cd 438.14±24.82cd 3 948.4±31.8d
PD12 208.38±1.20a 75.06±1.59a 0.360±0.009a 19.20±0.62d 417.85±32.06d 3 826.3±71.6e
JQ119 PD4.5 247.42±2.39d 79.84±3.04e 0.323±0.010d 23.34±0.47a 592.67±29.88a 5 164.8±28.2a
PD6 253.14±1.29d 86.46±1.93d 0.342±0.007c 22.43±0.35b 569.91±15.77ab 5 080.0±17.1b
PD7.5 263.64±3.11c 92.54±1.39c 0.351±0.004bc 21.58±0.45c 546.44±33.22bc 4 946.1±54.8c
PD9 271.44±4.72b 98.50±0.70b 0.363±0.008b 20.55±0.50d 542.00±14.50c 4 860.8±37.7d
PD12 282.48±10.31a 108.54±1.05a 0.385±0.015a 19.61±0.92e 519.76±17.39bc 4 789.7±35.6e
差异来源 Source of variation
品种Hybrids (H) ** ** ** ** ** **
种植密度 Plant density (PD) ** ** ** ** ** **
品种×种植密度H×PD ** ** * ns ns **
注:不同小写字母表示处理间差异显著(P<0.05);**.在 P<0.01 水平上显著,*.在 P<0.05 水平上显著,ns.无显著性(P>0.05)。
Note:Different lowercase letters indicate significant difference among the treatments (P<0.05);**. Significant difference at P<0.01,*. Significant difference at P<0.05,ns. No significant (P>0.05).
密度增加,不同品种玉米开花期单株叶面积和穗位叶面积降低。与PD4.5相比,ZD958和JQ119在PD6、PD7.5、PD9、PD12穗位叶面积分别降低6.19%,11.38%,16.78%,20.63%和3.84%,7.80%,8.55%,12.30%。由此可知,增密对JQ119茎秆形态的影响较ZD958更显著;而对叶面积的影响ZD958更显著。且相同密度下,不同品种间株高、穗位高、穗位系数、穗位叶面积、单株叶面积均表现为JQ119>ZD958。

2.2 增密对夏玉米开花期冠层消光系数的影响

图2可知,不同密度间开花期冠层消光系数(k)差异显著(P<0.05)。PD4.5处理时,ZD958和JQ119消光系数(k)分别为0.91,1.02。与PD4.5相比,PD6时ZD958和JQ119的k值分别减小4.9%,15.1%;PD7.5时减小17.4%,23.8%;PD9时减小14.6%,32.8%;PD12减小25.1%,40.3%,各处理间差异显著。消光系数过大,则冠层透光性差;消光系数过小,漏光较多,冠层光能截获较少。JQ119品种k值的变化幅度对增密的响应更明显,ZD958变化幅度小,冠层结构较优。
Fig.2 Effect of increasing plant density on canopy extinction coefficient (k) at anthesis in summer maize
Different lowercase letters indicate significant difference among the treatments (P<0.05). The same as Fig.3,4,6.

图2 增密对夏玉米开花期冠层消光系数(k)的影响

不同小写字母表示处理间差异显著(P<0.05)。图3,4,6同。

Full size|PPT slide

2.3 增密对夏玉米开花期穗位叶光合能力的影响

图3,4可知,密度增加显著影响不同品种夏玉米开花期穗位叶净光合速率和穗位叶光合能力(P<0.05)。开花期穗位叶净光合速率(Pn)和穗位叶光合能力均随密度的增加而减小。与PD4.5相比,ZD958和JQ119在PD6、PD7.5、PD9、PD12的Pn分别降低4.51%,6.34%,9.92%,16.55%和2.83%,5.59%,11.57%,23.96%。低密度时,JQ119 的Pn值较大,当增加到一定密度时,ZD958较大。与PD4.5相比,ZD958和JQ119在PD6、PD7.5、PD9、PD12穗位叶光合能力分别降低10.42%,17.00%,25.03%,33.76%和6.50%,12.95%,19.13%,33.31%。这表明,不同品种玉米开花期源的特性对增密的响应不同。
Fig.3 Effects of increasing plant density on net photosynthetic rate of ear leaf at anthesis in summer maize

图3 增密对夏玉米开花期穗位叶净光合速率的影响

Full size|PPT slide

Fig.4 Effects of increasing plant density on photosynthetic capacity of ear leaf at anthesis in summer maize

图4 增密对夏玉米开花期穗位叶光合能力的影响

Full size|PPT slide

对穗位叶光合能力与种植密度的关系进行线性拟合,不同品种穗位叶光合能力与种植密度的关系如图5所示,可知,穗位叶光合能力与种植密度呈负相关。ZD958的线性方程为y=-0.076x+1.996(R2=0.906 3),JQ119的方程为y=-0.088x+2.421(R2=0.997 0)。这表明不同品种夏玉米开花期穗位叶光合能力可以根据种植密度用线性函数进行预测。
Fig.5 Relationship between net photosynthetic rate of ear leaf and plant density at anthesis for ZD958 and JQ119

图5 郑单958及金秋119开花期穗位叶净光合速率与种植密度的关系

Full size|PPT slide

2.4 增密对夏玉米穗粒数的影响

图6可知,穗粒数随密度的增加显著减小。从PD4.5到PD12,ZD958穗粒数分别减少26.2,6.0,27.5,38.5粒,JQ119穗粒数分别减少67.7,13.8,60.3,77.0粒。与PD4.5相比,ZD958各处理穗粒数降幅分别是5.74%,7.06%,13.10%,21.55%;JQ119降幅分别是11.15%,13.43%,23.38%,36.07%。除从PD6到PD7.5外,种植密度每增加一个梯度,穗粒数均显著减小(P<0.05);而PD6和PD7.5间差异不显著。不同品种间比较,JQ119穗粒数大于ZD958,降幅也较大。
Fig.6 Effect of different planting densities on kernel number per ear in summer maize

图6 不同种植密度对夏玉米穗粒数的影响

Full size|PPT slide

不同品种夏玉米穗粒数与种植密度呈负相关(图7)。对穗粒数与种植密度的变化关系进行线性拟合,得出ZD958的方程为y=-13.03x+515.58(R2=0.974 9),JQ119的方程为y=-27.93x+720.89(R2=0.957 1)。这说明JQ119穗粒数变化受增密影响较敏感,其籽粒库容受增密影响较明显。
Fig.7 Relationship between kernel number per ear and plant density for ZD958 and JQ119

图7 郑单958及金秋119穗粒数与种植密度的关系

Full size|PPT slide

3 结论与讨论

增密会引起植株对光资源和水肥等其他限制性资源的竞争,从而导致植株形态、冠层形态发生变化[26-27]。作物源的强弱取决于冠层光合特性、冠层光合能力的强弱[28-29]。增加种植密度会改变玉米冠层结构,单株叶面积减小;密度过高会导致冠层中下部遮光且CO2浓度变低,限制穗位叶光合能力,导致叶片早衰[12,30-31]。本研究表明,密度增加,不同品种玉米单株叶面积、穗位叶面积、消光系数(k)、基部第Ⅲ节茎粗显著降低,穗位叶净光合速率和穗位叶光合能力的变化趋势同上,而玉米株高、穗位高和穗位系数增加。k过高或过低均会影响玉米冠层对光合有效辐射的截获,ZD958品种 k值的变化幅度小,有利于冠层截获更多的光能。株高、穗位高越低,穗位系数越小,代表作物的抗倒伏能力越强[32],叶面积越大,物质生产能力越强[12],JQ119的源生产能力较强,抗倒伏能力较弱。本研究还发现,种植密度每增加1×104株/hm2,ZD958穗位叶光合能力降低0.076 μmol/s,JQ119降低0.088 μmol/s。两品种穗位叶光合能力对增密的响应特征一致。
作物的源影响着库,库反作用于源,而粒库主要表现为粒数与粒质量[33],且玉米穗粒数与密度呈负相关[34]。本研究发现,密度显著影响粒库的形成,种植密度每增加1×104株/hm2,ZD958穗粒数降低13.03粒,JQ119降低27.93粒。穗粒数的显著降低可能与开花期叶源降低、营养物质供应不足有关。并且,不同品种库特征对增密的响应不同,增密对ZD958粒库特征的影响小于JQ119。ZD958能够维持较高的净光合速率和穗粒数,保持较平衡的源库关系,减少密度增加对叶源、粒库造成的损失。此外,本研究建立的线性关系可应用于增密对玉米冠层光合特性与粒库建成的模拟预测上,为增密条件下玉米生长发育与生产力模拟研究提供参考。
源库关系是作物高产的关键,且发现源与库特征关系与种植密度有关[34]。本研究表明,增密对夏玉米叶源和粒库的影响程度不同。与PD4.5相比,增加种植密度,ZD958和JQ119叶源分别降低10.42%~33.76%和6.50%~33.31%,粒库分别降低5.74%~21.55%和11.15%~36.07%,由此可知,ZD958与JQ119两品种对增密的响应差异主要体现在粒库建成上。这可能是因为ZD958株型更加紧凑,叶片遮挡少,增密对其吐丝授粉进程的影响较小,因而穗粒数损失较小。JQ119粒库受密度限制较大,主要有2个原因,首先增密影响了玉米吐丝授粉进程,造成籽粒败育;其次叶源减弱、营养物质供应减少,也影响着粒库的建成。但是吐丝授粉进程如何受源库关系的调控尚不明确,仍需未来的进一步研究。本研究对夏玉米个体源库关系的研究,可为玉米耐密群体与个体关系的探索提供理论基础。

References

[1]
国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021.
National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistical Press, 2021.
[2]
王禹. 新形势下我国粮食安全保障研究[D]. 北京: 中国农业科学院, 2016.
Wang Y. Study on China's food security in the new situation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
[3]
Sangoi L. Understanding plant density effects on maize growth and development:An important issue to maximize grain yield[J]. Ciência Rural, 2001, 31(1):159-168. doi:10.1590/s0103-84782001000100027.
[4]
Sarlangue T, Andrade F H, Calviño P A, Purcell L C. Why do maize hybrids respond differently to variations in plant density?[J]. Agronomy Journal, 2007, 99(4):984-991. doi:10.2134/agronj2006.0205.
[5]
Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. Research progress on reduced lodging of high-yield and-density maize[J]. Journal of Integrative Agriculture, 2017, 16(12):2717-2725. doi:10.1016/S2095-3119(17)61785-4.
[6]
Wei S S, Wang X Y, Li G H, Qin Y Y, Jiang D, Dong S T. Plant density and nitrogen supply affect the grain-filling parameters of maize kernels located in different ear positions[J]. Frontiers in Plant Science, 2019, 10:180. doi:10.3389/fpls.2019.00180.
[7]
谷利敏, 乔江方, 张美微, 朱卫红, 黄璐, 代书桃, 董树亭, 刘京宝. 种植密度对不同耐密夏玉米品种茎秆性状与抗倒伏能力的影响[J]. 玉米科学, 2017, 25(5):91-97. doi:10.13597/j.cnki.maize.science.20170515.
Gu L M, Qiao J F, Zhang M W, Zhu W H, Huang L, Dai S T, Dong S T, Liu J B. Effect of planting density on stalk characteristics and lodging-resistant capacity of different density-resistant summer maize varieties[J]. Journal of Maize Sciences, 2017, 25(5):91-97.
[8]
耿文杰, 李宾, 任佰朝, 赵斌, 刘鹏, 张吉旺. 种植密度和喷施乙烯利对夏玉米木质素代谢和抗倒伏性能的调控[J]. 中国农业科学, 2022, 55(2):307-319. doi:10.3864/j.issn.0578-1752.2022.02.006.
Geng W J, Li B, Ren B Z, Zhao B, Liu P, Zhang J W. Regulation mechanism of planting density and spraying ethephon on lignin metabolism and lodging resistance of summer maize[J]. Scientia Agricultura Sinica, 2022, 55(2):307-319.
[9]
傅鹏霄, 王珏, 李广浩, 陆卫平, 陆大雷. 不同栽培模式对江苏省夏玉米产量和氮素利用的影响[J]. 江苏农业学报, 2021, 37(5):1151-1159. doi:10.3969/j.issn.1000-4440.2021.05.009.
Fu P X, Wang J, Li G H, Lu W P, Lu D L. Effects of different cultivation patterns on the yield and nitrogen utilization of summer maize in Jiangsu Province[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(5):1151-1159.
[10]
赵久然, 陈国平. 不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程的观察[J]. 中国农业科学, 1990, 23(4):28-34.
Zhao J R, Chen G P. Effects of shading treatment at different stages of plant development on grain production of corn(Zea mays L.)and observations of tip kernal abortion[J]. Scientia Agricultura Sinica, 1990, 23(4):28-34.
[11]
阎忠敏, 廖树华, 张太俊, 周顺利. 玉米穗粒数形成过程模型研究[J]. 玉米科学, 2011, 19(5):114-118. doi:10.13597/j.cnki.maize.science.2011.05.014.
Yan Z M, Liao S H, Zhang T J, Zhou S L. Study on the formative process model of ear kernel number in maize[J]. Journal of Maize Sciences, 2011, 19(5):114-118.
[12]
裴文东, 张仁和, 王国兴, 雷文妮, 雷格丽, 高敏, 张宏军. 玉米冠层结构和群体光合特性对增密的响应[J]. 玉米科学, 2020, 28(3):92-98. doi:10.13597/j.cnki.maize.science.20200312.
Pei W D, Zhang R H, Wang G X, Lei W N, Lei G L, Gao M, Zhang H J. Responses of canopy structure and population photosynthetic traits on increased planting density of different maize cultivars[J]. Journal of Maize Sciences, 2020, 28(3):92-98.
[13]
Chen W Y, Jia B, Chen J Y, Feng Y J, Li Y, Chen M T, Liu H H, Yin Z T. Effects of different planting densities on photosynthesis in maize determined via prompt fluorescence,delayed fluorescence and P700 signals[J]. Plants, 2021, 10(2):276. doi:10.3390/plants10020276.
[14]
李虹桥, 赖莹, 母娜, 严红梅, 汤维群, 蒋小灵, 高雯, 吴永成. 密度对不同株高油菜冠层结构与群体光合能力的影响[J]. 浙江农业学报, 2022, 34(3):419-427. doi:10.3969/j.issn.1004-1524.2022.03.01.
Li H Q, Lai Y, Mu N, Yan H M, Tang W Q, Jiang X L, Gao W, Wu Y C. Effect of plant density on canopy structure and population photosynthetic capacity of rape-seed with different plant heights[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3):419-427.
[15]
张春雨, 白晶, 丁相鹏, 张吉旺, 刘鹏, 任佰朝, 赵斌. 错株增密种植对夏玉米光合特性及产量的影响[J]. 中国农业科学, 2020, 53(19):3928-3941. doi:10.3864/j.issn.0578-1752.2020.19.007.
Zhang C Y, Bai J, Ding X P, Zhang J W, Liu P, Ren B Z, Zhao B. Effects of staggered planting with increased density on the photosynthetic characteristics and yield of summer maize[J]. Scientia Agricultura Sinica, 2020, 53(19):3928-3941.
[16]
徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响[J]. 中国农业科学, 2017, 50(13):2463-2475. doi:10.3864/j.issn.0578-1752.2017.13.006.
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland[J]. Scientia Agricultura Sinica, 2017, 50(13):2463-2475.
[17]
Cárcova J, Uribelarrea M, Borrás L, Otegui M E, Westgate M E. Synchronous pollination within and between ears improves kernel set in maize[J]. Crop Science, 2000, 40(4):1056-1061. doi:10.2135/cropsci2000.4041056x.
[18]
任永峰, 黄琴, 王志敏, 赵沛义, 高宇, 连海飞. 藜麦植株养分积累对源库调节的响应[J]. 华北农学报, 2018, 33(5):151-159. doi:10.7668/hbnxb.2018.05.021.
Ren Y F, Huang Q, Wang Z M, Zhao P Y, Gao Y, Lian H F. Response of nutrient accumulation in quinoa to source-sink adjustment[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(5):151-159.
[19]
罗宏海, 张旺锋, 赵瑞海, 韩春丽, 施敏. 种植密度对新疆膜下滴灌棉花群体光合速率、冠层结构及产量的影响[J]. 中国生态农业学报, 2006, 14(4):112-114.
Luo H H, Zhang W F, Zhao R H, Han C L, Shi M. Effects of planting densities on canopy apparent photosynthesis,canopy structure and yield of cotton drip-irrigated under the mulch in Xinjiang[J]. Chinese Journal of Eco-Agriculture, 2006, 14(4):112-114.
[20]
冯汉宇, 王志敏, 孔凡娜, 张敏洁, 周顺利. 基于控制授粉技术的玉米籽粒生育特性与建成机制[J]. 作物学报, 2011, 37(9):1605-1615. doi:10.3724/SP.J.1006.2011.01605.
Feng H Y, Wang Z M, Kong F N, Zhang M J, Zhou S L. Mechanism of maize kernel setting and characteristics of kernel growth and development under controlled pollination[J]. Acta Agronomica Sinica, 2011, 37(9):1605-1615.
[21]
王兴才, 杨文钰. 基于间套作弱光胁迫下作物源库协调与产量研究进展[J]. 中国油料作物学报, 2019, 41(2):292-299. doi:10.7505/j.issn.1007-9084.2019.02.019.
Wang X C, Yang W Y. Review on relationship of source-sink and crop yield under shading stress in intercropping systems[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(2):292-299.
[22]
蒋强, 康亮, 张晓, 姚一华, 梁琼月, 顾明华, 何冰. 不同施氮水平对木薯源库关系的影响[J]. 西南农业学报, 2016, 29(9):2162-2166. doi:10.16213/j.cnki.scjas.2016.09.026.
Jiang Q, Kang L, Zhang X, Yao Y H, Liang Q Y, Gu M H, He B. Effects of nitrogen level on source-sink relationship of cassava[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(9):2162-2166.
[23]
李永松, 陈基旺, 袁帅, 苏雨婷, 崔璨, 蒋艳方, 陈平平, 王晓玉, 易镇邪. 3种化学调控剂对湘南双季超级稻源库关系的影响[J]. 杂交水稻, 2021, 36(1):93-100. doi:10.16267/j.cnki.1005-3956.20200303.063.
Li Y S, Chen J W, Yuan S, Su Y T, Cui C, Jiang Y F, Chen P P, Wang X Y, Yi Z X. Effects of three chemical regulators on source-sink relationship of double-cropping super rice in southern Hunan[J]. Hybrid Rice, 2021, 36(1):93-100.
[24]
Zhou B Y, Sun X F, Wang D, Ding Z S, Li C F, Ma W, Zhao M. Integrated agronomic practice increases maize grain yield and nitrogen use efficiency under various soil fertility conditions[J]. The Crop Journal, 2019, 7(4):527-538. doi:10.1016/j.cj.2018.12.005.
[25]
Narayanan S, Aiken R M, Vara Prasad P V, Xin Z G, Yu J M. Water and radiation use efficiencies in Sorghum[J]. Agronomy Journal, 2013, 105(3):649-656. doi:10.2134/agronj2012.0377.
[26]
吴含玉, 张雅君, 张旺锋, 王克如, 李少昆, 姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制[J]. 作物学报, 2019, 45(2):248-255. doi:10.3724/SP.J.1006.2019.83042.
Wu H Y, Zhang Y J, Zhang W F, Wang K R, Li S K, Jiang C D. Photosynthetic characteristics of senescent leaf induced by high planting density of maize at heading stage in the field[J]. Acta Agronomica Sinica, 2019, 45(2):248-255.
[27]
任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响[J]. 作物学报, 2016, 42(12):1864-1872. doi:10.3724/SP.J.1006.2016.01864.
Ren B Z, Li L L, Dong S T, Liu P, Zhao B, Yang J S, Wang D B, Zhang J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights[J]. Acta Agronomica Sinica, 2016, 42(12):1864-1872.
[28]
徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(3):414-422. doi:10.3724/SP.J.1006.2018.00414.
Xu T J, T F, Zhao J R, Wang R H, Chen C Y, Liu Y E, Liu X Z, Wang Y D, Liu C G. Photosynthetic characteristics,dry matter accumulation and translocation,grain filling parameter of three main maize varieties in production[J]. Acta Agronomica Sinica, 2018, 44(3):414-422.
[29]
吕广德, 殷复伟, 王超, 李宁, 钱兆国, 吴科. 不同播种量对小麦泰科麦33干物质积累转运、旗叶光合特性及产量构成的影响[J]. 江苏农业学报, 2021, 37(1):16-28. doi:10.3969/j.issn.1000-4440.2021.01.003.
G D, Yin F W, Wang C, Li N, Qian Z G, Wu K. Effects of sowing amounts on dry matter accumulation and distribution,photosynthetic characteristics of flag leaves and yield composition of wheat TKM 33[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(1):16-28.
[30]
刘铁宁, 徐彩龙, 谷利敏, 董树亭. 高密度种植条件下去叶对不同株型夏玉米群体及单叶光合性能的调控[J]. 作物学报, 2014, 40(1):143-153. doi:10.3724/SP.J.1006.2014.00143.
Liu T N, Xu C L, Gu L M, Dong S T. Effects of leaf removal on canopy apparent photosynthesis and individual leaf photosynthetic characteristics in summer maize under high plant density[J]. Acta Agronomica Sinica, 2014, 40(1):143-153.
[31]
郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8):1871-1883. doi:10.3724/SP.J.1006.2022.13024.
Guo Y, Chai Q, Yin W, Fan H. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize[J]. Acta Agronomica Sinica, 2022, 48(8):1871-1883.
[32]
曹庆军. 春玉米抗茎倒能力评价及其化学调控技术研究[D]. 哈尔滨: 中国科学院, 2016.
Cao Q J. Evaluation of stalk lodging resistance of different spring maize genotypes and mechanism of its improvement by plant growth regulators(PGRs)[D]. Harbin: Chinese Academy of Sciences, 2016.
[33]
Zhai L Y, Wang F, Yan A, Liang C W, Wang S, Wang Y, Xu J L. Pleiotropic effect of GNP1 underlying grain number per panicle on sink,source and flow in rice[J]. Frontiers in Plant Science, 2020, 11:933. doi:10.3389/fpls.2020.00933.
[34]
刘伟, 吕鹏, 苏凯, 杨今胜, 张吉旺, 董树亭, 刘鹏, 孙庆泉. 种植密度对夏玉米产量和源库特性的影响[J]. 应用生态学报, 2010, 21(7):1737-1743. doi:10.13287/j.1001-9332.2010.0258.
Liu W, P, Su K, Yang J S, Zhang J W, Dong S T, Liu P, Sun Q Q. Effects of planting density on the grain yield and source-sink characteristics of summer maize[J]. Chinese Journal of Applied Ecology, 2010, 21(7):1737-1743.
Share on Mendeley

Collection(s)

Zea mays L.

21

Accesses

0

Citation

Detail

Sections
Recommended

/